Vittorio Cristini

From Top Italian Scientists Wiki

Vittorio Cristini, Ph.D.

PRESENT TITLES

  • Professor of Computational Biology and Mathematics in Medicine, 2022-present
Department of Medicine, The Houston Methodist Research Institute
  • Professor and Chairman, Mathematics in Medicine Program, 2018-present
The Houston Methodist Research Institute
  • Professor, Population Health Sciences, 2021-present
Weill Cornell Medicine, Cornell University
  • Professor, Physiology, Biophysics and Systems Biology, 2021-present
Weill Cornell Medicine, Cornell University, 2017-present
  • Adjunct Professor, Department of Imaging Physics
The University of Texas MD Anderson Cancer Center

Business Address: Houston Methodist Research Institute, R8-123, 6670 Bertner Avenue, Houston Texas- 77030, Email: vcristini@houstonmethodist.org, Phone- 505-934-1813

SHORT BIOGRAPHY AND PERSONAL STATEMENT

Since July 2018, I have been with the Houston Methodist Research Institute (HMRI) as Professor and Chairman of the Mathematics in Medicine Program, while my academic appointments are as Professor of Physiology, Biophysics and Systems Biology at Cornell University Medical School and Professor of Computational Biology and Mathematics in Medicine at the Department of Medicine of Houston Methodist. I am also member of the graduate program and of the promotion and tenure committee at both institutions. Finally, I am currently an Adjunct Professor of Imaging Physics at the MD Anderson Cancer Center. In the past decades, by focusing on clinical translation of mathematical and biophysical models, I have established multiple local, national, and international collaborations, in order to combine forces and work towards multi-faceted and multi-disciplinary studies. More recently, my team has established several collaborations with research scientists and clinicians at the HMRI in different fields of interest, including immunoncology (Dr. Shu-hsia Chen), and clinical translational cancer research (Drs. Jenny Chang, Esnaola Kai and Bernicker, Houston Methodist Cancer Center). These collaborative efforts have resulted in the development of several successful grant applications. Over the years, I’ve also served as consultant or independent contractor for a number of pharma and biomedical device companies and as CFO for a neuroimaging society.[2]

Scientific recognition

The collaborations and scientific output throughout the years have brought me international recognition as a “thought leader” of research excellence and leadership in the fields of mathematical and computational biology, applied and computational mathematics, physical oncology, complex fluids and microfluidics, and multidisciplinary (bio)materials science. In 2014, I was honored to be recognized ISI Highly-Cited Researcher in Mathematics, and had the privilege to be named one of the World’s “most influential scientific minds,” shared with less than 100 mathematicians worldwide. In my 27 years in research, I have also had the privilege to serve as editor for several scientific journals, including Cancer Research, NeuroImage, Frontiers, and PLOS Computational Biology, I have published over 100 peer-reviewed journal articles, and two book monographs with Cambridge University Press in 2010 and with CRC Press in 2017. I have served as consultant and board member for a number of private companies3, and on several faculty committees at various academic institutions.

My work has been recognized through various awards, nationally and internationally. I was the first recipient of the “Andreas Acrivos Dissertation Award in Fluid Dynamics” by the American Physical Society in 2000 for my PhD thesis in Chemical Engineering at Yale University. My 2005 paper in the Bulletin of Mathematical Biology was in the top 0.1% of citations in the field of Mathematics and has been designated as a “New Hot Paper in the field of Mathematics” by the Institute for Scientific Information (ISI) Web of Knowledge; two articles have been featured in the Cancer Research Highlights of the American Association for Cancer Research. My research has been highly recognized internationally and by the media and several science museums in the US, and has been supported by the Cullen Trust for Health Care, Artidis corporation, the National Science Foundation, the National Institutes of Health, the Department of Defense, and the States of California, Texas, and New Mexico, among others.

Funding and strategic development

Over the past 20 years, I have continually served in PI roles on several NSF, NIH, and DoD grants focused on the development of predictive multi-scale, patient-specific computational models of tumor growth and mechanistic mathematical models of tumor response to chemo/immunotherapy, targeted therapy, and nano-therapeutics, most notably as part of multi-institutional grants including two NSF and joint NSF/NIGMS grants (funded in September 2017 and 2013, respectively), two R01s beginning in April and July 2018, two U01 NCI grants on pancreatic and gynecological cancers (funded in August 2015 and July 2017, respectively), two NCI Physical Sciences in Oncology Centers (PS-OC), one NCI Center for Excellence in Cancer Nanotechnology (CCNE), of which I also served as the overall PI in 2015-2016, one NCI Integrative Cancer Biology Program (ICBP) center grant, and one NIGMS P50 grant in systems biology, several additional R01s and one SPORE grant. At UCI, UNM, UTHealth, and HMRI I have developed and taught novel courses in Computational and Precision Biomedicine, and have mentored and trained graduate students, postdocs, and junior faculty, including mentees in the NIGMS Spatio-Temporal Modeling Center (STMC UNM) and the NIGMS-IRACDA Academic Science Education and Research Training (ASERT) program, Weil-Cornell Graduate School, and Rice University Applied Physics. I have also established important collaborations with industrial partners as well, including ARTIDIS (a company based in Basel, Switzerland), and AstraZeneca. One of the major goals behind this type of strategic network of preclinical and clinical collaborations with mathematical, physical scientists, and engineers is to develop new intellectual property (IP) centered around mathematical interpretation of clinically relevant data methods to predict and optimize therapy outcome.

Modeling-supported clinical translation

I pioneered the field of “Physical Oncology”, which aims at using mathematical modeling, physical theories, and engineering approaches to describe and quantify biological mechanisms that play important roles in the growth of cancer and in response to therapies. With a solid background and experience in Applied Mathematics and Chemical Engineering, and specifically in the development of theories and numerical methods in Complex Fluids and Materials, I am dedicated to applying and adapting engineering and physical sciences approaches to the modeling of complex normal and pathologic biological tissue. One important approach I have been leading is focused on investigating the effects of diffusion, perfusion, and transport phenomena on cancer growth and dissemination rate, and on the development of resistance to drug or other systemic therapies. All the models and approaches developed within this framework integrate input from patient and experimental data (ACS Nano 2013, PLOS Computational Biology 2013, 2016, PLOS One 2013, 2016, Scientific Reports 2018, Nature Communications 2018, JCI Insight 2019). These efforts have been supported by the National Cancer Institute’s (NCI) Physical Science in Oncology (PS-OC) and the Center for Excellence in Cancer Nanotechnology funding mechanisms (three U54s funded) and regular R01-type funding from the National Science Foundation and National Institutes of Health. In line with this type of work, I have also made important discoveries on the role of physical transport in drug resistance in patients (JCI 2014, PNAS 2013, 2016, Clin Cancer Res 2018, Science Advances 2020, Nature BME 2021, ELife 2022). Currently, a first-of-kind effort is underway at the MD Anderson Cancer Center, the Baylor College of Medicine, and the Houston Methodist Cancer Center, towards the development of prospective clinical trials (and retrospective clinical studies) based on my mathematical models of physical transport in tumors to elucidate the role of physics in overall resistance to cancer chemotherapy and immunotherapy drugs.

My translational modeling effort is part of an ongoing collaboration with biologists, oncologists, and nanotechnologists at MD Anderson Cancer Center (Drs. Anirban Maitra, Gabriel Lopez-Berestein, Anil Sood, David Hong, Jen Wargo, George Calin, Bulent Ozpolat, Eugene Koay, Subrata Sen, James Welsh, Mary Edgerton, John Hazle, Ahmed Kaseb, and Christopher Crane among the others), Moffitt Cancer Center (Drs. Jason Fleming, Daniel Anaya), Baylor College of Medicine (Drs. Alastair Thompson, Michael Lewis, and Jeff Rosen), UNM (Drs. Jeffrey Brinker, Elaine Bearer, Cheryl Willman), Rutgers University (Drs. Wadih Arap, Renata Pasqualini, Daniela Staquicini), Stanford University School of Medicine (Dr. Sam Gambhir), USC School of Medicine (Dr. David Agus), and Houston Methodist (Drs. Haifa Shen, Shu-hsia Chen, Alessandro Grattoni, and others). To properly account for the purely biological phenomena affecting this tissue physics, we developed data-driven cell signaling and molecular interaction models, including under the umbrella of the NCI ICBP program (one additional U54 funded) in collaboration with the Baylor College of Medicine and also in collaboration with UNM (Cancer Res 2009a,b, Physical Biology 2012, PLOS Comput Biol 2016).

Education and outreach

As a scientific leader, I also contributed to developing outreach and education initiatives to promote novel approaches and results coming from the field of physical oncology. In particular, with the support of the NCI, we have developed a series of educational workshops (most notably: The Ohio State University workshop on “The role of biomedical informatics in overcoming current barriers in cancer research” 2008; and the National Cancer Institute meeting: “Integrating and Leveraging the Physical Sciences to Open a New Frontier in Oncology” 2008). These efforts led to the creation of the PS-OC program by the NCI. An introduction to this new field was developed in my book monograph on multiscale mathematical modeling of tumor growth, Cambridge University Press (2010). A second monograph, titled “An Introduction to Physical Oncology”, was published by CRC Press in 2017, where new mathematical models of physical transport processes (including our recent modeling work) that use patient tissue and imaging data to predict the efficacy of 6mmune/chemotherapy and radiation therapy are introduced and discussed.

In my career, I have also had the pleasure to serve as mentor to ca. 100 trainees, including graduate students, postdocs and junior faculty, and many of them have gone on to successful research and academic careers (e.g., Dr. Paul Macklin, Indiana University; Dr. Steven Wise, The University of Tennessee; Dr. Hermann Frieboes, University of Louisville; Dr. Jennifer Pascal, University of Connecticut, Drs. Wang, Dogra, Nizzero and Butner, HMRI). My current research group is highly interdisciplinary, and includes undergraduate students, graduate students, post-doctoral fellows, research associates, and junior faculty in the field of biophysics, applied physics, engineering, statistics, mathematical modeling, imaging, and immunology.

Citizenship

United States of America, Italy

Undergraduate Education

1989 – 1994 University of Rome – La Sapienza, Laurea Degree, Summa cum Laude, Nuclear Engineering

Graduate Education

1995 – 1996 Yale University, New Haven, Connecticut, M.S., Chemical Engineering

1996 – 1998 Yale University, New Haven, Connecticut, M.Phil., Chemical Engineering

1998 – 2000 Yale University, New Haven, Connecticut, Ph.D., Chemical Engineering, Thesis: “Drop dynamics in viscous flow”

Postgraduate Training

2000 – 2002 University of Minnesota, Minneapolis, Minnesota, Postdoctoral Associate, Chemical Engineering and Materials Science

2001 – 2002 University of Minnesota, Minneapolis, Minnesota, Postdoctoral Associate, Institute for Mathematics and its Applications

Academic and Administrative Appointments

2022-present Houston Methodist Department of Medicine, Professor of Computational Biology and Mathematics in Medicine

2021-present Weill Cornell Medicine, Cornell University, Professor of Population Health Sciences

2020-present Weill Cornell Medicine, Cornell University, Professor, Graduate School of Medical Sciences

2018-present The Houston Methodist Research Institute (HMRI), Professor & Director, Mathematics in Medicine Program

2017-2018 The University of Texas Health Science Center at Houston McGovern Medical School, Co-director of the Nanochemistry and 3D-printing Service Center Institute for Molecular Medicine; Co-director of the Proteomics Service Center, Institute for Molecular Medicine

2017-present The University of Texas MD Anderson Cancer Center, Adjunct Professor, Department of Imaging Physics

2016–2018 The University of Texas Health Science Center at Houston McGovern Medical School, Professor with tenure and Director, Center for Precision Biomedicine, The Brown Institute of Molecular Medicine

2015–2016 The University of Texas Health Science Center at Houston McGovern Medical School, Visiting Professor and Chairman, Department of Nanomedicine and Biomedical Engineering; Professor, Center for Proteomics and Systems Biology, The Brown Institute of Molecular Medicine

2015-2018 Department of Nanomedicine, Full Affiliate Member, HMRI

2014 – 2015 King Abdulaziz University, Jeddah, Saudi Arabia, Distinguished Adjunct Professor, Department of Mathematics

2012 – 2018 The Methodist Hospital Research Institute, Senior Scientist Fellow

2010 – 2015 University of New Mexico, Albuquerque, New Mexico, Professor, Department of Chemical and Nuclear Engineering; Professor, Center for Biomedical Engineering, The Victor and Ruby Hansen Surface Professor in the Molecular Modeling of Cancer, UNM Cancer Center; Director of Computational Biology, Department of Pathology; Professor with Tenure, Department of Pathology

2009 – 2010 University of Texas Health Science Center at Houston, Texas, Professor, Department of Biomedical Engineering; Director, Center for Computational Biomedicine, School of Biomedical Informatics; Professor with Tenure, School of Biomedical Informatics

2009 – 2010 University of Texas MD Anderson Cancer Center, Houston, Texas, Associate Professor, Department of Systems Biology, Division of Cancer Medicine

2009 – 2010 University of Texas at Austin, Texas, Professor, Department of Biomedical Engineering

2009 – present University of Dundee, Scotland, UK, Honorary Professor, Department of Mathematics

2009 – 2010 Scottish Universities Life Sciences Alliance, Scotland, UK, Professor

2009 Auvergne University, Clermont-Ferrand, France, Chair of Excellence in Neurosurgery

2007 – 2009 University of Texas MD Anderson Cancer Center, Houston, Texas, Associate Professor, Department of Systems Biology, Division of Cancer Medicine

2007 – 2009 University of Texas at Austin, Texas, Associate Professor, Department of Biomedical Engineering

2006 – 2009 University of Texas Health Science Center at Houston, Texas, Associate Professor, Department of Biomedical Engineering, Associate Professor, School of Biomedical Informatics

2006 – 2007 University of California, Irvine, California, Associate Professor, Department of Mathematics

2005 University of Naples, Italy, Visiting Assistant Professor, Department of Chemical Engineering

2002 – 2006 University of California, Irvine, California, Assistant Professor, Department of Biomedical Engineering; Assistant Professor, Department of Mathematics

2002 University of Minnesota, Minneapolis, Minnesota, Mentor Faculty, NIH-National Institute of Dental Craniofacial Res., T32 Training Grant; Visiting Assistant Professor, School of Mathematics

Positions at National/International Professional Organizations

2018 – present Consulting History Information available upon request

2016 – 2017 Society for Brain Mapping & Therapeutics (SBMT), Science Committee Member

2006 – 2007 International Brain Mapping and Intra-operative Surgical Planning Foundation, Chief Financial Officer

2005 – 2007 Centre for Molecular (Bio) Medicine, Trieste, Italy, Scientific Advisory Board Member

2004 – 2006 Orqis Medical/Edwards Lifesciences, Consultant

2004 – 2007 International Brain Mapping and Intra-operative Surgical Planning Society, Board of Directors

2004 – 2007 American Institute of Chemical Engineers, Fluids Programming Committee Member

HONORS AND AWARDS

  • EnMed Capstone Innovator Award, Texas A&M U & Houston Methodist, 2023/9. (Award recipient: Gayatri Prakash, Mentor: Zhihui Wang)
  • Wolfram Innovators Award (an International award by Wolfram Technology); for using Mathematica for mathematical modeling to predict cancer patient response to immune checkpoint inhibitor immunotherapy on a per-patient basis, using only current standard-of-care clinical measures, and at times earlier after start of treatment than current response assessment standards are able to provide, 2021/10. (with Joseph D. Butner and Zhihui Wang)
  • Career Cornerstone Award, 2021/4, Houston Methodist. (with Zhihui Wang)
  • President’s Award for Excellence in Peer-Reviewed Publication for “A mathematical model for the quantification of a patient’s sensitivity to checkpoint inhibitors and long-term tumour burden,” in Nature Biomedical Engineering, 2021/1, Houston Methodist (with Joseph D. Butner and Zhihui Wang)
  • The Cockrell Foundation Professorship Award to support mathematical modeling efforts in infectious diseases research at HMRI. 2021-2024. (with Prashant Dogra)
  • News press featuring paper Dogra et al., ACS Pharmacology & Translational Science 2021, DOI: 10.1021/acsptsci.0c00183: New York Times Medical Sciences, News Medical
  • News press featuring paper Butner et al., Sci Adv 2020, PMC7190324: AAAS EurekAlert!, Medical Xpress, Science Magazine, 7th floor, News Medical, New Break, Bright Surf, Advanced Science News, MJH Life Science, X-MOL, News Break
  • Featured article: “A Multiscale Agent-Based Model of Ductal Carcinoma in Situ,” by Butner et al., IEEE TBME 2020 May.
  • Excellence in Mentoring Award 2019. Methodist Association for Postdoctoral and Trainee Affairs. (Postdoc: Sara Nizzero)
  • Award for Excellence in Peer-Reviewed Publication for “Establishing the Effects of Mesoporous Silica Nanoparticle Properties on in vivo Disposition Using Imaging-Based Pharmacokinetics,” in Nature Communications 2018, Houston Methodist
  • Government of Mexico CONACYT Fellowship, 2018-Present (Student: Maria Jose Pelaez Soni, Rice University)
  • Ph.D. Thesis “with distinction” (Student: J. Butner, Center for Biomedical Engineering, UNM), July 2017. · Invited feature in Global Health & Pharma 2016, www.ghp-magazine.com
  • Invited contributions to Open Access Government, 2015-2021
  • Endowed Chair – Rochelle and Max Levit Chair in the Neurosciences, The University of Texas Health Science Center at Houston McGovern Medical School. 2016-2018
  • UT STAR award – The University of Texas System – Science and Technology Acquisition and Retention (STARS). 2015 “Mathematical modeling integrated with experiments and clinical trials to understand tumor heterogeneity, drug delivery and treatment outcome” ($1,000,000)
  • V Cristini, EJ Koay, Z Wang. Taking cancer out of the equation. International Innovation 2015 (September) 191: 38-40.
  • Named as one of the “World’s Most Influential Scientific Minds” in 2014 by Thomson Reuters. http://highlycited.com
  • Named in 2014 by the Institute for Scientific Information (ISI), Thomson Reuters, as one of 99 Highly-Cited Researchers in Mathematics worldwide. http://highlycited.com
  • Endowed Professorship – The Victor and Ruby Hansen Surface Professor of Molecular Modeling of Cancer, University of New Mexico Cancer Center, 2010-2015.
  • Recent Articles and News Reports, featuring Dr. Cristini’s latest research have appeared in 2013-2015, including in: The Business Journals; ABC News and local TV and radio shows; several daily newspapers; The Morning Brew; AdvanceWeb; Newswise; The Stanford Biomedical Computation Review (see below for detailed media coverage links)
  • The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2013-2014 (Student: Romica Kerketta, UNM)
  • 2013-2014 School of Engineering Award – the Charlotte and William Kraft Graduate Fellowship (Student: Terisse Brocato, UNM)
  • The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2014-2016 (Student: Terisse Brocato, UNM)
  • The New Mexico Center for the Spatiotemporal Modeling of Cell Signaling (STMC) Graduate Student Fellowship, 2014-2016. (Student: Prashant Dogra, Biomedical Sciences, University of New Mexico)
  • NIGMS-IRACDA Academic Science Education and Research Training (ASERT) K12GM088021 postdoctoral fellowship (Jennifer Pascal)
  • PS-OC Newsletter 2014, “Physical Transport Properties Could Predict Outcomes for Patients with Cancer”
  • Young Oncologist Essay Award, American Radium Society’s 95th Annual Meeting, April 27 – May 1, 2013, Scottsdale, Arizona (E Koay)
  • Front cover of Physical Biology, October 2012
  • Articles by van de Ven et al, AIP Advances 2012, and by Chauviere et al., AIP Advances 2012, selected for inclusion in the Virtual Journal of Nanoscale Science & Technology, April 2012
  • Chair of Excellence in Neurosurgery, Auvergne University, Clermont-Ferrand, France, 2009
  • Highly Accessed BioMed Central Paper (Sanga, S. et al., BMC Medical Genomics 2009, 2:59)
  • SULSA Professor 2009-2010 (Scottish Universities Life Sciences Alliance)
  • Front cover of Nonlinearity 2010
  • Honorary Professor of Mathematics, University of Dundee, Scotland UK, 2009-present
  • Founding Member of International Academy of Nanomedicine (IANM), 2009-present
  • Active Member (by invitation) of American Association for Cancer Research (AACR), 2009-present
  • Cancer Research Highlights, May 15 2009: “Multi-parameter Computational Modeling of Tumor Invasion.” (Cancer Research 2009 69: 4493-4501)
  • Interview on National Public Radio, May 25 2009, “Math Could Help Solve Cancer Tumor Mysteries,” by Jack Williams.
  • Special Feature of article: “Prediction of drug response in breast cancer using integrative experimental/computational modeling,” by Frieboes et al., Cancer Research 2009, at the American Association for Cancer Research annual meeting, Denver, CO 2009.
  • Special Feature of article: “Multi-parameter Computational Modeling of Tumor Invasion,” by Bearer et al., Cancer Research 2009, at the American Association for Cancer Research annual meeting, Denver, CO 2009.
  • Special feature of Dr. Cristini’s project “Virtual Cancer” at the event “Gratias Dono” – Gifts that change life, organized by the University of Texas Health Science Center to honor medical philanthropy. Houston Country Club, February 4 2009.
  • 2008 STEP-UP Clinical and Research Internship Award for Research Excellence—MD Anderson Cancer Center (Undergraduate student: Deepa Raghunathan)
  • Featured in Forbes magazine – “Can Mathematics Cure Cancer?” 27 October, 2008
  • Video exhibit of Cristini’s cancer simulations in the Boston Museum of Science, 2008
  • Front cover of Journal of Mathematical Biology 2008
  • Featured in the Cancer Bulletin of the National Cancer Institute (“The mathematics of cancer”, Cancer Bulletin July 10, 2007 – Vol. 4 / Number 21)
  • Fellow, American Academy of Nanomedicine, 2006-present
  • Front cover of Bulletin of Mathematical Biology 2006-2009
  • Cancer Research Highlights, Feb 1 2006: “Simulation model predicts tumor invasion in marginal environmental conditions.” (Cancer Res 2006; 66(3):1597-604)
  • UNCF-MERCK Graduate Science Research Dissertation Fellowship, 2006-2008 (Student: N DeMagalhaes).
  • NIH Graduate Fellowship, 2006-2008 (Student: N DeMagalhaes)
  • Biomedical Engineer of the year, The Henry Samueli School of Engineering, University of California at Irvine, 2006 (Student: K. Velasco)
  • New Hot Paper in the field of Mathematics, Jul 2006, Thomson-Scientific Essential Science Indicators (Bull Math Biol. 2005; 67(2):211-59)
  • B. S. Honors Thesis, U. of Minnesota 2004 (Student: A. Anderson)
  • · Physical Sciences Faculty Endowed Award, U.C. Irvine, 2003-4 (Student: X. Zheng,)
  • Research Scholarship, Minnesota Supercomputing Institute, Univ of Minnesota, 2001
  • Andreas Acrivos Dissertation Award in Fluid Dynamics, American Physical Society—Division of Fluid Dynamics 2000, “For important theoretical and numerical contributions to the description and understanding of drop dynamics and breakup in laminar and turbulent flows”
  • Henry Prentiss Becton Dissertation Award, Yale 2000, “For exceptional achievements in the field of Engineering and Appl. Sci.”
  • Outstanding Paper Award, American Institute of Chemical Eng 1997
  • Harold Cheel Fund Graduate Fellowship, Yale U. 1995
  • Ente Nazionale Energia Atomica (ENEA) Fellowship, Italy, 1994-1995
  • University of Rome – La Sapienza. Laurea Degree, Summa cum Laude, Nuclear Engineering, 1994

Media coverage (selected)

Dogra, P. et al. JCI Insight 2023 PMC10371350 DOI: 10.1172/jci.insight.169860

Newswise: https://www.newswise.com/coronavirus/study-suggests-longer-time-between-covid-19-vaccines-more-effective-for-some/?article_id=790807
Becker’s Hospital Review: https://www.beckershospitalreview.com/public-health/new-covid-19-bivalent-booster-may-require-customized-dosing-study.html
Houston Methodist Newsroom: https://www.houstonmethodist.org/newsroom/study-suggests-longer-time-between-covid-19-vaccines-more-effective-for-some/
Medical Xpress: https://medicalxpress.com/news/2023-04-longer-covid-vaccines-effective.html

Butner et al., eLife, 2021 PMID: 34749885 DOI: 10.7554/eLife.70130.

eLife Press Release, Model predicts early response to cancer immunotherapy https://elifesciences.org/for-the-press/4e89e409/model-predicts-early-response-to-cancer-immunotherapy
X-MOL https://en.x-mol.com/paper/article/1392261663514148864
Society https://sciety.org/articles/meta/10.1101/2021.05.10.21256419
Technology Networks Mathematical Model Designed to Predict Early Response to Immunotherapy https://www.technologynetworks.com/cancer-research/news/mathematical-model-designed-to-predict-early-response-to-immunotherapy-355667

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2021-02/hm-mmd020121.php

ScienceNet.cn by China Science Daily

http://news.sciencenet.cn/htmlpaper/2021/1/202111116585021860733.shtm?id=60733
https://mp.weixin.qq.com/s/vO0S5yqUJEAPW0HusY0z-g

X-MOL

https://www.x-mol.com/paper/1346548820336594944

NewsBreak

https://www.newsbreak.com/news/2138602865734-a-mathematical-model-for-the-quantification-of-a-patients-sensitivity-to-checkpoint-inhibitors-and-long-term-tumour-burden

Nonur.com

https://nonur.com/2021/02/02/mathematical-method-developed-to-predict-cancer-and-drug-specific-immunotherapy-efficacy/

Nature in Facebook

https://m.facebook.com/nature/posts/10158296561028167

Nature Bioengineering Community

Towards providing physicians with a quantitative tool for optimizing immunotherapy treatment protocols for each individual patient https://bioengineeringcommunity.nature.com/posts/towards-providing-physicians-with-a-quantitative-tool-for-optimizing-immunotherapy-treatment-protocols-for-each-individual-patient

Diagnostics World

Mathematical Model of Treatment Response ‘Designed For Clinical Translation’ https://www.diagnosticsworldnews.com/news/2021/03/04/mathematical-model-of-treatment-response-designed-for-clinical-translation

The Naked Scientist (BBC)

https://www.bbc.co.uk/sounds/play/p0915r4r

Science Daily

https://www.sciencedaily.com/releases/2020/12/201210112118.htm

AP News

https://apnews.com/press-release/pr-newswire/business-pandemics-public-health-products-and-services-coronavirus-pandemic-d69af76f4657a6cce42b7600a67fdb39

News Medical

https://www.news-medical.net/news/20201210/Researchers-find-new-method-for-safe-and-effective-delivery-of-medicines-to-the-lungs.aspx

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2020-12/cp-ivi120320.php https://www.youtube.com/watch?v=wLi0LciskaY&t=13s https://twitter.com/Gut_BMJ/status/1338527208718131206

Social Media

https://www.youtube.com/watch?v=wLi0LciskaY&t=13s
https://twitter.com/Gut_BMJ/status/1338527208718131206
https://www.facebook.com/permalink.php?id=123423901047095&story_fbid=3718876078168508

News Medical

https://www.news-medical.net/news/20201108/Innate-immunity-key-to-limiting-viral-load-in-COVID-19-cases.aspx

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2020-04/hm-cmm042920.php

Medical Press

https://medicalxpress.com/news/2020-04-clinically-applicable-math-patient-outcomes.html

Science Magazine

https://scienmag.com/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy/

7th floor

http://7thspace.com/headlines/1180408/clinically_applicable_math_model_predicts_patient_outcomes_to_cancer_immunotherapy.html

News Medical

https://www.news-medical.net/news/20200430/New-math-model-predicts-clinical-outcomes-in-cancer-patients-treated-with-immunotherapy.aspx

NewsBreak

https://www.newsbreak.com/texas/houston/news/0Ov2e42o/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy

Bright Surf

https://www.brightsurf.com/news/article/043020508630/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy.html

Advanced Science News

https://www.advancedsciencenews.com/a-mathematical-model-to-predict-patient-response-in-cancer-immunotherapy/

The Business Journals

http://www.bizjournals.com/albuquerque/print-edition/2013/08/23/vittorio-cristini-everything-clicked.html

ABC News

http://www.koat.com/news/new-mexico/albuquerque/Cancer-Math/-/9153728/21512452/-/14irq94z/-/index.html

AdvanceWeb

http://laboratory-manager.advanceweb.com/Archives/Article-Archives/Perspectives-in-Pathology-19.aspx

Newswise

http://www.newswise.com/articles/unm-cancer-center-scientist-develops-a-numbers-approach-to-treatment

The Stanford Biomedical Computation Review

http://biomedicalcomputationreview.org/content/cancer%E2%80%99s-crystal-ball-personalized-tumor-models-guide-treatment

Santa Fe New Mexican

http://www.santafenewmexican.com/news/health_and_science/article_905465f9-5772-5c7d-a99e-d73fa07aca41.html

UNM Cancer Center Press Release

http://cancer.unm.edu/files/2013/08/FINAL_20130812_Predictive-Modeling-DrCristini_PR.pdf

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-uses-physics-again-to-fight-cancer/

KSFR SF (radio interview)

http://cancer.unm.edu/newsroom/dr-cristini-fights-cancer-using-an-unconventional-approach/

Albuquerque The Magazine

http://cancer.unm.edu/files/2014/07/Albuquerque-The-Magazine-Dr.-Cristini_2.pdf

The Morning Brew

https://www.youtube.com/watch?v=p9fxhWKnD0g

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-develops-a-numbers-approach-to-treatment/

UNM HSCTV

https://www.youtube.com/watch?v=k-TalZh8y0s

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/dr-cristini-named-influential-scientific-mind/

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/dr-cristini-uses-math-customize-breast-cancer-therapy/

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-recognized-one-influential-scientific-minds/

International Innovation

http://www.internationalinnovation.com/taking-cancer-out-of-the-equation/

American Physiological Society

https://www.newswise.com/articles/fighting-cancer-with-math

Open Access Government

  1. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=4bc1adac-723d-4261-a012-f8ebe5f8ad14
  2. https://www.openaccessgovernment.org/prediction-cancer-treatment-outcome-using-physics-2/21536/
  3. https://www.openaccessgovernment.org/prediction-cancer-treatment-outcome-using-physics/21432/
  4. https://www.openaccessgovernment.org/profile-combining-biology-physics-solve-cancer-problem/22371/
  5. https://www.openaccessgovernment.org/mathematical-relationship-immune-system-cancer-implications-cancer-therapy/22262/
  6. https://www.openaccessgovernment.org/profile-mathematical-pathology-determining-surgical-volume-breast-cancer-treatment/23968/
  7. https://www.openaccessgovernment.org/cancer-diagnosis-and-treatment/25598/
  8. https://www.openaccessgovernment.org/understanding-cancer-physics/25938/
  9. https://www.openaccessgovernment.org/spatio-temporal-mathematical-model-cancer/28963/
  10. https://www.openaccessgovernment.org/integrated-non-invasive-cancer-diagnosis/31174/
  11. https://www.openaccessgovernment.org/tissue-scale-factors-predicting-cancer-treatment-outcome/32302/
  12. https://www.openaccessgovernment.org/stem-cell-transdifferentiation/36169/
  13. https://www.openaccessgovernment.org/dilemma-diagnosis-pancreatic-cysts/35088/
  14. https://www.openaccessgovernment.org/identifying-pancreatic-cysts-might-turn-cancer/34409/
  15. https://www.openaccessgovernment.org/multimodal-feedback-control-can-lead-self-organizing-morphogenesis/34429/
  16. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=558600cb-8de9-4616-9242-f8f3b41da315&pnum=78
  17. https://www.openaccessgovernment.org/regenerative-medicine-to-trump-cancer/53150/
  18. https://www.openaccessgovernment.org/mathematical-modelling-nanoparticle-pharmacokinetics/68801/
  19. https://www.openaccessgovernment.org/wp-content/uploads/2019/10/OAG24-WEB.pdf
  20. https://www.openaccessgovernment.org/oncology/78946/
  21. Nizzero S, Plodinec M, Wang Z, Cristini. Giving oncology its power back: A clinical technology revolution is conquering the US from Texas (December 2019). https://www.openaccessgovernment.org/oncology/78946/
  22. https://www.openaccessgovernment.org/graph-theory-in-the-study-of-alzheimers-disease-progression/83621/
  23. https://www.openaccessgovernment.org/body-dynamics-of-sars-cov-2-treatment-of-covid-19/86929/
  24. Butner et al., “Personalized prediction of immunotherapy efficacy: improving clinical approaches via mechanistic mathematical modeling”, Open Access Government, January 2021: p. 116-117. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=abe4b9c2-2198-40d4-9b41-c05d7aaff94f
  25. Dogra, P., Cristini, V., “Is the Pandemic Obeying the Elliott Wave Principle of Financial Markets?” (April 2021). https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=4bc1adac-723d-4261-a012-f8ebe5f8ad14
  26. Peláez, M.J., Dogra, P., Cristini, V. “Impact of mathematical modeling in understanding and controlling the COVID-19 pandemic” (October 2021) https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=eaaa2691-f2e2-4ecd-9e5e-f2985210b663

Open Access Government

  1. eBook: http://www.adjacentgovernment.co.uk/wp-content/uploads/2016/01/Uni-of-Texas-ebook-web.pdf
  2. eBook: https://www.openaccessgovernment.org/mathematical-modeling-drug-delivery-via-nanoparticles-cancer-treatment/27830/

Global Health & Pharma

Invited e-book: “Mathematical Pathology” in Global Health & Pharma 2016, www.ghp-magazine.com

Editorial Board (selected)

2023 – present Cancers (Guest Editor)

2022 – present Frontiers in Physiology (Guest Editor)

2021 – present Nanomaterials (Guest Editor)

2013 – present PLOS Computational Biology (Guest Editor)

2011 – present Frontiers in Computational Physiology and Medicine

2010 – present World Journal of Clinical Oncology

2009 – present Open Journal of Neuroscience (Ross Science Publishers)

2008 – present Cancer Research (American Association of Cancer Research)

2007 – present Open Biomedical Engineering Journal (Bentham Science)

2007 – present Journal of Serbian Society for Computational Mechanics

2006 – 2007 NeuroImage (Elsevier)

2004 – present Journal of Biomedical Nanotechnology (American Scientific Publishers)

2004 – present Biomedical Microdevices (Springer)

Selected: Invitations for Service on National Grant Review Panels, Study Sections, Committees (mentee involved)

  • Early Career Fellowship review, The India Alliance, 5/2023 (Z Wang)
  • NIH/NCI Clinical and Translational Cancer Research review meeting on breast cancer (R03/R21), 5/2023 (Z Wang)
  • NIH special emphasis panel BBBT for Biodata and Biomodeling, 2/2023 (Z Wang)
  • DOD Breast Cancer Program (BCRP) Clinical and Experimental Therapeutics 1 (CET-1) review panel, 7/2022 (Z Wang)
  • NIH/NCI Program Project V (P01) Special Emphasis Panel (SEP) for PAR-20-077 (National Cancer Institute Program Project Applications, P01), 6/2022 (Z Wang)
  • NIH Modeling and Analysis of Biological Systems (MABS) study section, 2/8-9, 2022 panel member · The Research Foundation Flanders (FWO), Review College. 2022-present
  • NIH special emphasis panel for Academic-Industrial Partnerships for Translation of Medical Technologies, ZRG1 SBIB,10/25-26 (Z Wang)
  • NIH Modeling and Analysis of Biological Systems (MABS) study section panel on October 21-22, 2021
  • European Science foundation reviewer: Research Foundation Flanders call for Junior and Senior Research Projects, 2021
  • NIH/NCI Program Project V (P01) Special Emphasis Panel (SEP), for PAR-20-077 (National Cancer Institute Program Project Applications, P01), 6/10-11, 2021 (Z Wang)
  • RFS/SRFS, Science, Technology, Engineering and Mathematics Selection Panel (STEM Panel), The Research Grants Council (RGC) of Hong Kong, 4/2021 (Z Wang)
  • NIH Special Emphasis Panel ZCA1 RPRB-H (M2), 3/19/21 (P Dogra)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/22-23, 2021 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/29, 2020 (Z Wang)
  • NIH Small Business Innovation Research (SBIR) review panel, co-chair, 2/12, 2021
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/3, 2020 (Z Wang)
  • European Science foundation: I-SITE ULNE (Université Lille Nord-Europe), Program for Early-stage Researchers in Lille (PEARL). 19-Lille-PEARL-007
  • Appel A Projects 2019:Inserm – Département de l’Evaluation et du Suivi des Programmes (DESP)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 10/10-11, 2019 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/24-25, 2019 (Z Wang)
  • NIH MABS Study Section, Special Emphasis Panel/Scientific Review Group, 2/14-15, 2019.
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/8, 2019 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 10/15-16, 2018 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/15, 2018 (Z Wang)
  • NIH Special Emphasis Panel, 2018/05 ZRG1 BST-H (2), Bioengineering Sciences and Technologies, 4/4 2018
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/22-23, 2018 (Z Wang)
  • The Dutch Cancer Society (KWF Kankerbestrijding), external reviewer 2018
  • The Netherlands Organisation for Scientific Research (I, the Dutch Research Council), external reviewer 2018
  • Cancer TMOI, French National Alliance for Life and Health Sciences (AVIESAN) jointly with the French National Cancer Institute (INCa) – mail reviewer in the field of multidisciplinary approaches in modeling complex biological processes applied to cancer, 2017
  • Sinergia funding instrument, Swiss National Science Foundation (SNSF) external reviewer 2018
  • Science Committee – Multidisciplinary Project Award 2018, Cancer Research UK
  • BSF (United States-Israel Binational Science Foundation), external reviewer 2018
  • Medical Research Council (MRC), UK, 2017. Mail reviewer invitation
  • Office of Sponsored Research (OSR) Competitive Research Grants (CRG), Mail review 2017, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
  • Netherlands Organisation for Scientific Research (I, the Dutch Research Council), Innovational Research Incentives Scheme (Veni), I-Interdivisional Veni round, 2017. Mail reviewer.
  • Breakthrough Award Levels 1 and 2 (BTA) peer review panel member invitation, 2017 Breast Cancer Research Program (BCRP), the Department of Defense Congressionally Directed Medical Research Programs (CDMRP).
  • NIH special emphasis panel for U01 Multiscale Modeling (MSM) program, 2016, 2017 (Z Wang)
  • NCI Provocative Questions PQ8: What cancer models or other approaches can be developed to study clinically stable disease and the subsequent transition to progressive disease? 2017. Ad hoc reviewer.
  • Cancer Research UK mail reviewer, 2015-2016.
  • Army Medical Research and Material Command (MRMC) Online Reviewer, 2016.
  • Pathobiology – 2 (PB-2) peer review panel member, 2016 Breast Cancer Research Program (BCRP), the Department of Defense Congressionally Directed Medical Research Programs (CDMRP).
  • NIH reviewer, 2016.
  • The Wellcome trust/DBT India Alliance Fellowship application reviewer, 2016.
  • NIGMS special panel to review a number of “Support of Competitive Research (SCORE)”. Bethesda, Maryland, on June 30 – July 1, 2015.
  • NIH special emphasis panel for Mathematical Modeling, Cancers and Cell Signaling systems, February 26, 2015.
  • Mail and Panel Reviewer, NIH CSR Oncology 1-Basic Translational Integrated Review Group, 2013-2015.
  • Mail and Panel Reviewer, NIH ZRG1 OTC-X(80) AREA: Oncological Sciences study section, 2013-2015.
  • Mail Reviewer, AIRC Italian Association for Cancer Research, 2013.
  • Center Advisory Committee (CAC): NCI Physical Sciences in Oncology Center (PSOC) U54: “The Center for Transport Onco-Physics”.
  • Senior Investigator Committee: NCI Physical Sciences in Oncology Center (PS-OC) U54: “The Center for Multiscale Complex Systems Transdisciplinary Analysis of Response to Therapy”.
  • Senior Leadership Committee; Pilot Grant Review Committee: Integrative Cancer Biology Program (ICBP) NCI U54: “The Center for Systematic Modeling of Tumor Development”.
  • OSU Mathematical Biosciences (MBI) program review, 2012.
  • Reviewer for German and French government grant funding agencies, 2012.
  • Mail Reviewer for several EU agencies, 2011-2013.
  • UNM Cancer Center P30 Senior Leadership Committee, 2011-2012.
  • Reviewer, Texas Center for Cancer Nanomedicine – Pilot Projects, 2011.
  • Reviewer, Center for Systematic Modeling of Cancer Development (Methodist Hospital Research Institute, Houston, TX and Baylor College of Medicine, Houston, TX) – Pilot Projects, 2011.
  • European Partnership for Alternatives Approaches to Animal Testing – Annual Workshop, Brussels, July 5-7, 2010.
  • Panel Member, 2010 DoD Congressionally Directed Medical Research Program (CDMRP), Breast Cancer Research Program (BCRP); Clinical and Experimental Therapeutics 5 (CET-5).
  • NIH mail reviewer (SBIR), 2010.
  • Panel Member, European Commission Research Directorate General Unit F5: Biotechnology for Health, FP7-Health-2010-single-stage – Alternative Testing Strategies, Brussels, March 15-19, 2010.
  • DoD Breast Cancer Idea Award review panel member, 2009, 2010.
  • DoD Breast Cancer Concept Award review panel member, 2009, 2010.
  • Reviewer, Medical Research Council, United Kingdom, 2010.
  • NIH review panel member, 2009.
  • Reviewer, Israel Science Foundation, 2009.
  • Department of Defense—Congressionally Directed Medical Research Program (CDMRP), Concept awards, 2008 Breast Cancer funding cycle.
  • Joint National Science Foundation-DMS/National Institutes of Health-NIGMS panel member 2008. Mathematical Biology.
  • NIH review panel member 2008. R01: Multi-scale modeling of physiome in health and disease.
  • National Cancer Institute—The Ohio State University: workshop on “The role of biomedical informatics in overcoming current barriers in cancer research”, 2008.
  • National Cancer Institute meeting – “Integrating and Leveraging the Physical Sciences to Open a New Frontier in Oncology”, 2008.
  • Reviewer, U.S. – Israel Bi-National Science Foundation, 2008.
  • Reviewer, American Chemical Society, 2007.
  • Reviewer, WWTF Vienna Science and Technology Fund 07. Program: Mathematics and Cancer Nanotechnology.
  • Reviewer, Dept of Energy-Office of Science 03. Program: Innovative and Novel Computational Impact on Theory and Experiments.
  • Panel member, Telemedicine and Advanced Technology Research Command (TATRC)/American Institute of Biological Sciences (AIBS) panel to conduct independent scientific review to the Alliance for NanoHealth (ANH) program. Houston, TX, 2006.
  • Reviewer, Department of Energy-Office of Science, 2005. Program: Basic Energy Sciences.
  • Reviewer, National Science Foundation-Division of Mathematical Sciences, 2005.

EDUCATION AND OUTREACH

Service on Graduate School Committees

2022 – Present Houston Methodist Academic Institute and University of Naples Federico II (Italy) International Academic Affiliation

2021 – Present Weill Cornell Medicine, Cornell University, Professor, Graduate School of Medical Sciences

2017 – 2018 Regular Member, Graduate School of Biomedical Sciences (GSBS) Medical Physics Program, The University of Texas Health Science Center at Houston

2003 – 2006 University of California, Irvine, California, Member and Co-Founder, Mathematical and Computational Graduate Program

Service to the Community

Selected: Conference Organization Invitations (mentee involved)

  • Conference Program Co-Chair, The 6th International Conference on Computational Biology and Bioinformatics (ICCBB 2023), December 2023 (Z Wang)
  • Editorial group discussion on Research Integrity, Springer Nature, July 2023 (Z Wang)
  • Editorial meeting on how to improve IEEE publications, IEEE, June 2023 (Z Wang)
  • Discussion Leader, Gordon Research Seminar (Physical Science of Cancer), Galveston, TX, February 2023 (P Dogra)
  • Gordon Research Seminar on Physics of Cancer, Elected Chair (S Nizzero)
  • 5th International Conference on Computational Biology and Bioinformatics (ICCBB 2021), December 2021, Technical Program Committee Member (Z Wang)
  • NCI-DOE Collaboration 2021 Virtual Workshops: Accelerating Precision Radiation Oncology Through Advanced Computing and Artificial Intelligence. Discussion Leader (DL) for “Multimodal Patient Trajectories: Individual Predictive Modeling,” March 2021 (Z Wang)
  • Abstract Screening Committee Track Leader, American Association of Pharmaceutical Scientists PharmSci 360 Conference 2021, Track: Clinical Pharmacology (P Dogra)
  • Guest Editor, Nanomaterials. Special issue: Delivery of Nanoformulations for Cancer Diagnosis and Treatment, 2021. With Z Wang and P Dogra)
  • Translational Engineering and Healthcare Innovation (TEHI) committee election, IEEE EMBS, 2019 (Z Wang)
  • Symposium on “Imaging in Tumor Modeling,” American Association of Physicists in Medicine (AAPM) Annual Meeting (Nashville TN | July 29 – August 2, 2018)
  • Symposium on “Imaging in Tumor Modeling, World Molecular Imaging Congress (WMIC), 2018.
  • Organizing Committee Member, “2nd International Conferences on Clinical Oncology and Molecular Diagnostics,” June 11-13, 2018, Dublin, Ireland. Theme: Enlightening the Future Panorama of Clinical Oncology
  • Organizing Committee member, “28th Euro congress on Cancer Science and Therapy,” August 09-10, 2018, Madrid, Spain. Theme: To codify a responsive discussion on cancer science and therapy
  • Innovate Cancer Research 2017, International Colloquium on Cancer Research, advisory board member, November 29-30, Brisbane, Australia.
  • World Brain Mapping 2017, Society for Brain Mapping & Therapeutics (SBMT), Science Committee Member.
  • National Science Foundation (NSF) merit review survey 2016 “Satisfaction of Investigators and Reviewers with the Merit Review Process.”
  • Los Alamos National Labs, New Mexico Consortium Workshop to launch NMC/LANL joint initiatives in Biomedical Technology, May 9, 2013.
  • Co-organized the U54 NCI-ICBP Center for Systematic Modeling of Tumor Development symposium at The Methodist Hospital Research Institute, Houston, TX, February 12, 2012.
  • Session Organizer, Sandia / UNM Cancer Center Symposium on Nanoparticle Human Interactions, June 2-3, 2011.
  • Organizer, NIMBioS Investigative Workshop on Solid Tumor Modeling. University of Tennessee, Knoxville, January 19-21, 2011.
  • Mini-symposium on Tumor Growth Modeling.
  • Chair and Organizer, World Congress on Computational Mechanics, Sydney, 2010.
  • Joint EU & US Workshop on Virtual Tissues in RTP. Focus: modeling tissue level outcomes from molecular and cellular scales, April 21-24, 2009.
  • Chair and Organizer, Educational Session: “Mathematical Models in Pharmacology,” American Association for Cancer Research (AACR) Annual Meeting, Boulder, Colorado, April 18, 2009.
  • Program Committee Member, joint BME symposium UT Austin, UT Health Science Center Houston, UT MD Anderson Cancer Center; Director, computational bioengineering session. Institute for Molecular Medicine, Houston, TX, January, 15, 2009.
  • 15th US National Congress on Theoretical & Applied Mechanics (USNCTAM06), Biomechanics of Tissues Mini-symposium, University of Colorado, Boulder, 2006.

Session Chair, “Cells and Materials: At the Interface between Mathematics, Biology and Engineering,” Microfluidics symposium, Institute for Pure and Applied Mathematics, UCLA, 2006.

  • Program Committee Member, Cells and Materials Conference, Institute for Pure and Applied Math, UCLA, 2006.
  • Program Committee Member, International Brain Mapping and Intra-operative Surgical Planning Symposium, University of Southern California, 2005-2007.
  • Session Chair, International Brain Mapping and Intra-operative Surgical Planning Symposium, University of Southern California, 2005-2006.
  • Editor of the conference proceedings, European Conference on Mathematics and Theoretical Biology (ECMTB), 2005.
  • Session Chair, Stability and Non-linear Hydrodynamics, American Institute of Chemical Engineers Annual Meeting, 2005
  • Session Chair, Dynamics Days, University of California at Irvine, 2005.
  • Program Committee Member, Dynamics Days, University of California at Irvine, 2005.
  • Program Committee Member, 4th IEEE International Symposium on Bioinformatics and Bioengineering, Taichung, Taiwan, 2004.
  • Session Chair, International Biofluid Mechanics Conference, Caltech, 2003.

Sponsorship and Mentorship of Candidates for Postgraduate Degrees

1. Gayatri Prakash, MD student, EnMed Program, Texas A& University. April 2023-Present (not primary advisor; with Z Wang)

2. Joseph Cave, PhD student, Weill Cornell-Houston campus. August 2022-Present. (primary advisor, with Prashant Dogra and Z Wang)

3. Carmine Schiavone, PhD student in Chemical Engineering, Università degli Studi di Napoli Federico II, Naples, Italy. 2022-Present. (Co-advisor)

4. Rishi Ramesh, MD student, EnMed Program, Texas A& University. March 2023-Present (not primary advisor; with Z Wang and Prashant Dogra)

5. Gregory Zaugg, Masters student in Nanoscience, University of Basel, Basel, Switzerland. August 2022-Present. (primary advisor with S Nizzero)

6. Giacomo Doglio, Masters student in Physics, Università degli Studi di Milano, Milan, Italy. 2022-Present. (Not primary advisor)

7. Meitham Amereh, PhD student, University of Victoria, British Columbia, Canada, 2022-Present (not primary advisor).

8. Verya Gavili Kilaneh, MS, University of Kurdistan, Iran. 2022 (not primary advisor)

9. Yu Shen, PhD student, Johns Hopkins University, 2022 (not primary advisor)

10. Nithin Kumar Goona, PhD student, National Institute of Technology, Goa, India, 2022 (not primary advisor)

11. Maria Jose Pelaez Soni, PhD student in Applied Physics at Rice University. 2021-Present. (primary advisor)

12. Akash Awasthi, PhD student in Electrical and Computer Engineering, University of Houston. 2021-2022. (not primary advisor)

13. Ishaan Duggal, PhD student in Pharmaceutical Sciences at The University of Texas at Austin. 2021-2022. (not primary advisor)

14. Bandita Karki, Masters student in Statistics, University of Idaho. 2021-2022. (not primary advisor)

15. Garima Khanna, Masters student in Nanomedicine at Université de Paris, France. 2021-2022. (not primary advisor)

16. Carmine Schiavone, Masters student in Chemical Engineering, Università degli Studi di Napoli Federico II, Naples, Italy. 2021-Present. (Not primary advisor)

17. Maria Jose Pelaez Soni, Masters in Applied Physics at Rice University. Graduated May 2021. Title: Mechanistic modeling of pathological biomarkers to study Alzheimer’s disease progression. (primary advisor)

18. Giorgia Migliaccio, Masters in Bioengineering, Università degli Studi di Napoli Federico II, Naples, Italy. Graduated January 2021. Title: Calibration of wound healing assay in silico lattice model with experimental data. (Not primary advisor)

19. Luca Messina, Masters in Bioengineering, Università degli Studi di Napoli Federico II, Naples, Italy. Graduated January 2021. Title: A hybrid cellular automata for cancer cells growth and chemotaxis. (Not primary advisor)

20. Mingee Kim, Undergraduate in Biochemistry at Rice University. 2018-2021. (Not primary advisor)

21. Si Qi Tong, Undergraduate in Kinesiology at Rice University. 2018-2021. (Not primary advisor)

22. Sara Nizzero, PhD in Applied Physics at Rice University. 2018-2019. (Not primary advisor)

23. Rosalia Ferraro, PhD ,Department of Industrial Engineering, at University of Naples Federico II. (Not primary advisor)

24. Naomi Hasegawa, M.D., McGovern Medical School, UTHealth, 1st year, 2017-present. Webber award candidate

25. Terisse Brocato, Ph.D. Center for Biomedical Engineering, University of New Mexico, August 2012-December 2017. 2013-2014 School of Engineering Award – the Charlotte and William Kraft Graduate Fellowship; The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2014-Present. Graduated in December 2017. Title: “Mathematical Modeling for the Use of Predicting Chemotherapy and Nanoparticle Treatment Efficacy in Breast Cancer”

26. Prashant Dogra, Ph.D. Biomedical Sciences, University of New Mexico, August 2012-December 2017; The New Mexico Center for the Spatiotemporal Modeling of Cell Signaling (STMC) Graduate Student Fellowship, 2014-2016. Graduated in May 2018. Title: “Multiscale Modeling of Nanoparticle Biodistribution”

27. Joseph Butner, Ph.D. (Center for Biomedical Engineering, UNM), August 2012-July 2017. Graduated in July 2017 with distinction. Title: “A Multiscale Modeling Study of the Mammary Gland: Using mathematical modeling and computer simulation to study the roles of cell phenotypic dynamics and molecular signaling in the pubertal end bud and postmenopausal DCIS initiation”

28. Romica Kerketta, Ph.D. (Biomedical Sciences, UNM), October 2012-May 2017 (Co-Advisor). The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2013-2014. Graduated in May 2017. Title: “Exploring biological heterogeneity and its consequences at tissue and cellular scales through mathematical and computational modeling"

29. Kuan Feng, Ph.D. Biomedical Sciences, University of New Mexico, January 2014-2015 (not primary mentor)

30. Neelima Shrestha, Undergraduate researcher, Biochemistry, University of Idaho, Summer 2012 (not primary advisor)

31. Armin Day, Joint B.A. / M.D. Program, UNM 2011-2015

32. Nzola DeMagalhaes, Ph.D. Biomedical Engineering, University of California at Irvine 2009 — UNCF-MERCK Graduate Science Research Dissertation Fellow –NIH graduate Dissertation Fell

33. Xiaoqin Yuan, PhD, MD Anderson Cancer Center, 2009-2010 (not primary advisor)

34. Srimahita Kaliki, Ph.D. student, Biomed Engineering, The University of Texas at Austin, 2009-2010

35. Sandeep Sanga, Ph.D. Biomed Engineering, The University of Texas at Austin, 2009

36. Deepa Raghunathan, B.S. MD Anderson Cancer Center, 2008; STEP-UP Clinical and Research Internship Award for Research Excellence (not primary advisor)

37. Xiangrong Li, Ph.D. Applied Mathematics, University of California at Irvine, 2008 (not primary advisor)

38. Jahun Kim, Ph.D. Student, School of Health Information Sciences, The University of Texas Health Science Center, 2007-2010

39. Kaveh Azartash, M.S. Biomedical Engineering, University of California at Irvine, 2006

40. Hermann Frieboes, Ph.D. Biomedical Engineering, U.C. Irvine, 2006

41. Shuwang Li, Ph.D. Aerospace Engineering and Mechanics, University of Minnesota, 2005 (not primary advisor)

42. Ryan Hainley, M.S. Biomedical Engineering, University of California at Irvine 2005

43. Balakrishnan Sivaraman, M.S. Chemical Engineering and Materials Science, U.C. Irvine 2005

44. John Sinek, Ph.D. Applied Mathematics, University of California at Irvine, 2005

45. Xiaoming Zheng, Ph.D. Applied Mathematics, University of California at Irvine, 2005 – Physical Sciences Faculty Endowed Award, 2003-2004

Sponsorship and Mentorship of Postdoctoral Fellows and Faculty

1. Vrushaly Shinglot, Ph.D, Postdoctoral Fellow, Mathematics In Medicine Program, HMRI, July 2022- June 2023

2. Maguy Farhat, Postdoctoral Fellow in Radiology and Computational Imaging, Department of Gastrointestinal (GI) Radiation Oncology, MD Anderson Cancer Center, 2021-Present. (With JD Butner and Z Wang)

3. Arturas Zyemis, Non-Tenure-Track Assistant Professor, Mathematics in Medicine Program, HMRI, 2018-2022.

4. Sara Nizzero, Ph.D., Consultant, ARTIDIS, INC, 2021-present.

5. Sara Nizzero, Ph.D., Faculty Fellow, Mathematics in Medicine Program, HMRI, 2021-present.

6. Joseph Butner, Ph.D., Faculty Fellow, Mathematics in Medicine Program, HMRI, 2021-present.

7. Prashant Dogra, Ph.D., Non-Tenure-Track Assistant Professor, Mathematics in Medicine Program, HMRI, 2021-present.

8. Sara Nizzero, Ph.D., Postdoctoral Research Fellow, Mathematics in Medicine Program, HMRI, 2019-2021.

9. Sara Nizzero, Ph.D., Visiting Postdoctoral Fellow, Radiation Oncology, MD Anderson Cancer Center, 2020-2021.

10. Javier Ruiz Ramirez, Ph.D., Postdoctoral Research Fellow, Mathematics in Medicine Program, HMRI, 2018-2021.

11. Prashant Dogra, Ph.D., Postdoctoral Research Fellow, Mathematics in Medicine Program, HMRI, 2018-2021.

12. Joseph Butner, Ph.D., Research Associate, Mathematics in Medicine Program, HMRI, 2018-2021.

13. Zhihui Wang, Non-Tenure-Track Associate Professor, Mathematics in Medicine Program, HMRI, 2018-present.

14. Martina Mugnano, PhD candidate at University of Naples Federico II. (Not primary advisor)

15. Geoff V Martin, MD. Radiation Oncology Resident, MD Anderson. 2016-2018 (not primary mentor)

16. Yoo-shin Kim, Ph.D., Senior Research Scientist, Center for Proteomics and Systems Biology, The Brown Institute of Molecular Medicine, 2016-2017.

17. Angela Rugiano, PhD, Department of Mathematics, Univ/Calabria, Italy, 2015-2016 (not primary mentor).

18. Huaming Yan, Ph.D., Department of Mathematics, Department of Mathematics, University of California at Irvine, 2015-present (not primary advisor).

19. Greg von Winckel, Ph.D., Postdoctoral student, Chemical Engineering, UNM, Skinfrared, LLC, Albuquerque, NM, 2013-2015(not primary advisor).

20. Zhihui Wang, Non-Tenure-Track Assistant Professor, Department of Pathology, The University of New Mexico Health Science Center, 2011-2015.

21. Jennifer Pascal, ASERT Postdoctoral Student, Department of Pathology, The University of New Mexico Health Science Center, 2011-2013. NIGMS K12GM088021 postdoctoral fellowship.

22. Yao-Li Chuang, Postdoctoral Student, Department of Pathology, The University of New Mexico Health Science Center, 2010-2014; The University of Texas Health Science Center, 2009-2010.

23. Arnaud Chauviere, Non-Tenure-Track Assistant Professor, Department of Pathology, The University of New Mexico Health Science Center, 2010-2012; The University of Texas Health Science Center, 2009-2010.

24. Fang Jin, Postdoctoral student, Department of Pathology, The University of New Mexico Health Science Center, 2010-2011; The University of Texas Health Science Center, 2008-2010.

25. Babis Hatzirikou, Postdoctoral student, Department of Pathology, The University of New Mexico Health Science Center, 2010-2012; The University of Texas Health Science Center, 2009-2010.

26. Paul Macklin, Non-Tenure-Track Assistant Professor, School of Health Information Sciences, The University of Texas Health Science Center, 2007-2010.

27. Hermann Frieboes, Postdoctoral student, School of Health Information Sciences, The University of Texas Health Science Center, 2007-2010.

28. John Sinek, Ph.D., Postdoctoral student, Applied Mathematics, University of California at Irvine, 2005-2007.

29. Lan Pham, Postdoctoral student, Applied Mathematics, University of California at Irvine, 2003-2005.

30. Xiaoming Zheng, Postdoctoral student, Applied Mathematics, University of California at Irvine, 2005-2006.

31. Steven Wise, Postdoctoral student, Applied Mathematics, University of California at Irvine, 2003-2006.

Others (non-graduate/postgraduate)

  • Kelan Wu (Undergraduate student), University of Houston, Houston, TX, USA (02/23 – 06/23), Research topic: Machine learning applications to determine nanoparticle properties for tumor targeting and safety (with P Dogra & Z Wang)
  • Elisa Misuri (Undergraduate student), Politecnico di Torino, Italy (01/22 – 08/23), Research topic: Multiobjective optimization to guide immunosuppressive therapy in kidney transplant recipients to prevent BK virus infection (with P Dogra)
  • Ruchi Birur, Texas Academy of Mathematics and Science – summer 2022 (not primary advisor)
  • Sri Gouri Rajaram, B.S. Biomedical Engineering, Indian Institute of Technology, Kharagpur, India. 2021-2022. (not primary advisor)
  • Syed Asad Rizvi, B.S. Computer Science, University of Houston. 2021-2022. (not primary advisor)
  • Meinee Chiu, B. Pharmacy, Panjab University, India. Summer 2021. (not primary advisor)
  • Ananya Singh, B. Pharmacy, Panjab University, India. Summer 2021. (not primary advisor)
  • Jack Delk, B.S. Biomedical Engineering, Texas A&M University – summer 2021 (Not primary advisor)
  • Jorge Tito, Pre-Baccalaureate Trainee (High school student) at UTHealth – summer 2017
  • Josh Begay, Undergraduate researcher (Mechanical Engineering, Southwestern Indian Polytechnic Institute), Summer 2012 (co-advisor)
  • Zachariah Harris, B.S. Chemical Engineering, University of New Mexico, 2011-2012
  • Kristine Velasco, B.S. Biomedical Engineering, University of California at Irvine 2006 – BME Engineer of the Year
  • Anthony Anderson, B.S. Chemical Engineering and Materials Science, University of Minnesota 2004 – Honors Thesis.

Teaching Responsibilities

  • ‘Strategic Consideration for Healthcare Informatics’ Course, Master’s in Clinical Translation Management, University of St. Thomas, Houston, TX, USA, 10/30/2023 – Present. (Instructor: P Dogra)
  • Physiology, Biophysics & Systems Biology qBio Bootcamp 2021, 2022, 2023 (& 2024 expected), Houston Methodist Research Institute and Weill Cornell Medicine, Houston, TX, the first two weeks of August, 2021, 2022, 2023. Instructors: Joseph Butner, Prashant Dogra. Supervision: Vittorio Cristini, Zhihui Wang, Henry Pownell, John Cooke.
  • GS21 1331: Precision BioMedicine and Nanotechnology. Instructors: David Volk and Vittorio Cristini. (Institute of Molecular Medicine, The University of Texas Graduate School of Biomedical Sciences at Houston, 2017-2018, graduate)
  • Cristini, V. Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. 2017 nBME Scholarly Concentration Summer Seminar Series, UTHealth McGovern Medical School, Houston, TX, US. June 13, 2017. (invited lecture)
  • California State Summer School for Mathematics and Science (COSMOS) guest lecture 2017, UC Irvine.
  • Introduction to Computational Biomedicine (BIOM 505-004, The University of New Mexico, Albuquerque, 2012, graduate) Developed and taught a multi-disciplinary class in collaboration with the Spatio-Temporal Modeling Center and the New Mexico Cancer Nanoscience and Microsystems Training Center.―In this course, students are engaged in novel peer-reviewed research at the interface of medicine and the engineering and physical sciences, e.g., knowledge of literature relevant to a specific study and understanding of the corresponding biological background, soundness of the mathematical formulation of equations modeling the biological problem, insight into novel biology obtained from model investigations. The course consists of 3, 3-week long modules: a general one covering tools for computational biomedicine; one focused on modeling tumor spread (with guest instructor cell biologist Prof. Bridget Wilson); and one devoted to modeling intracellular transport (with guest instructor cell biologist Prof. Elaine Bearer). One class meeting/week includes both lecture and assessment of progress to provide feedback/help.
  • Foundations of Health Information Sciences II: Mathematical Modeling in Biomedicine (Health Information Sciences, The University of Texas Health Science Center, Houston; Biomedical Engineering, The University of Texas at Austin, 2009, graduate)
  • Numerical Analysis (Health Information Sciences, The University of Texas Health Science Center, Houston; Biomedical Engineering, The University of Texas at Austin, 2007-2010, graduate)
  • Advanced Engineering Mathematics (Biomedical Engineering, The University of Texas at Austin, 2007-2009, graduate)
  • Math modeling and computer simulation for Health Sciences (Health Information Sciences, The University of Texas Health Science Center, Houston; Biomedical Engineering, U.T. Austin, 2007, graduate)
  • Bio-Mass Transport (Biomedical Engineering, University of California at Irvine, 2004-2006, undergraduate)
  • Introduction to Predictive Oncology (Biomedical Engineering, University of California at Irvine, 2005-2006, graduate)
  • Introduction to Math and Computational Biology (COSMOS Program Physical Sciences, University of California at Irvine, 2004-2005, high school)
  • Applied Engineering Math II—Numerical Analysis (Biomedical Engineering, University of California at Irvine, 2003-2006, graduate)
  • Math Modeling and Computer Simulation of Complex Biology Systems (Biomedical Engineering, University of California at Irvine, 2003-2004, graduate)
  • Virtual Cancer: A Computer Model of Cancer Progression and Treatment (Engineering, University of California at Irvine, 2003, Freshman Semester)
  • Calculus I (School of Mathematics, University of Minnesota, 2002, undergraduate)
  • Transport Phenomena (Chemical Engineering and Materials Science, University of Minnesota, 2000, undergraduate)

GRANT SUPPORT

Current Grant Support

  • Golfers Against Cancer, Fund #37384: Predicting immunotherapy outcomes from noninvasive blood measures before start of treatment. 9/1/23–8/31/24. 60,000/yr DC. Role: Collaborator (PI: Z Wang)
  • Brown, Smith & Raymond EnMed Capstone Innovator Award (Texas A&M U & Houston Methodist). Predicting Cancer Immunotherapy Response by combining Mechanistic Modeling and Machine Learning. 9/1/23–8/31/25. 12,000/yr DC. Role: Collaborator (PI: Prakash, Mentor: Z Wang)
  • NIH/NINDS T32 Postdoctoral Fellow Training Grant (PI: P. Horner). Houston Methodist Neurological Institute’s Department of Neurosurgery. 05/01/2022-04/30/2027. Role: Faculty Mentor
  • ARTIDIS Ltd./MD Anderson Cancer Center/Houston Methodist Research Institute: Strategic Alliance for Biomechanics Marker Discovery in Clinical Trials. 7/1/2021–6/30/2026. Role: HMRI PI, 10% time, $50,000/yr DC.
  • NIH/NCI, R01CA253865: Nanoparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer. 3/4/2021- 2/28/2026. Role: Co-Investigator, 10% time, 111,569/yr DC. PI: Z Wang
  • NIH/NIBIB, 1R03EB033576: Physiologically based pharmacokinetic modeling of silica nanoparticles. 7/1/22 – 6/30/24. Role: Collaborator. PI: Yellepeddi; co-I: Dogra
  • ARTIDIS Ltd.—Sponsored Research Agreement: Predicting chemotherapy and immunotherapy outcome using measurements of tissue stiffness.8/1/2021- 12/31/2024. Role: PI, 5% time, $165,000/yr DC.
  • NIH/NCI, P50CA217674: The University of Texas MD Anderson Cancer Center SPORE in Hepatocellular Carcinoma. 9/25/2019 – 8/31/2024. Role: Co-Investigator, 3% time. $7,807/yr DC. PI: Bereta, Kaseb.
  • The Cockrell Foundation Professorship Award/HMRI: Mathematical modeling to support infectious diseases research. 3/1/21-2/29/24. 102,400/yr DC. (Awardee: Prashant Dogra.)

Pending Grant Support

  • NIH IRCN R01 (MPIs: Pasqualini, Wadih, Brinker, Cristini). 4/1/24–3/31/29. Rutgers U (NIH). Methodist Funds Requested: $928,626. Title: Antibody-targeted nanoparticles for therapeutic gene editing in aggressive variant prostate cancer. Role: MPI (1.2 calendar)
  • NIH RM1 (MPIs: Burley, Pasqualini). 4/1/24–3/31/29. Rutgers U (NIH). Methodist Funds Requested: $1,125,000. Title: Integration of In Vivo Phage Display & Machine Learning: A Multidisciplinary Approach for Ligand-Receptor Mapping of the Mammalian Vasculature. Role: Co-I & Methodist PI (1.2 calendar)
  • NIH/NIBIB R01 (MPIs: Dogra, Noureddine). 4/1/24–3/31/29. NIH. Total Funds Requested: $2,712,699. Title: Artificial intelligence-integrated mechanistic modeling for rational design of nanoparticles to improve organ targeting and safety. Role: Co-I (0.6 calendar).
  • NIH/NIAID 1R21AI178508-01A1 (PI: Dogra). 4/1/24–3/31/26. NIH. Total Funds Requested: $444,125. Title: Mechanistic modeling-based clinical trial simulator to support vaccine development. Role: Co-I (0.6 calendar)
  • NIH/NCI (PI: Dogra). 4/1/24–3/31/26. NIH. Total Funds Requested: $161,500. Title: Multiscale modeling to improve efficacy of microRNA therapy in pancreatic ductal adenocarcinoma. Role: Co-I (0.3 calendar)
  • CPRIT Individual Investigator Research Awards for. Computational Systems Biology of Cancer (MPIs: Welsh, Cristini). 3/1/24–2/28/27. CPRIT. Total Funds Requested: $300,000. Title: Development of immune biomarkers related to PET SUV through computational modeling for prediction of treatment response to Immunotherapy. Role: MPI (1.2 calendar)
  • NIH R01 (MPIs: Wang, Ozpolat). 7/1/24–6/30/29. NIH. Total Funds Requested: $2,913,640. Title: A mathematical model for simulating and predicting miRNA-873-based nanotherapeutics for pancreatic ductal adenocarcinoma. Role: Co-I (1.2 calendar)
  • NIH R01 (MPIs: Wang, Chung). 7/1/24–6/30/27. NIH. Total Funds Requested: $2,215,754. Title: Developing a mathematical model-based tool to predict immunotherapy outcomes in melanoma brain metastases. Role: Co-I (1.2 calendar)
  • NIH R01 (MPIs: Welsh, Cristini). 7/1/24–6/30/29. NIH. Total Funds Requested: $305,477. Title: Development of immune biomarkers related to PET SUV through computational modeling for prediction of treatment response to Immunotherapy. Role: MPI (1.2 calendar)
  • NIH 1R01CA285524-01A1 (MPIs: Wang, Ozpolat). 7/1/24–6/30/29. NIH. Total Funds Requested: $2,925,210. Title: Optimizing novel miR-873 nanotherapeutics for targeted cancer treatment using a combination of experimental and mechanistic modeling approaches. Role: Co-I (2.4 calendar)
  • NIH U01 (MPIs: Wang, Chung). 7/1/24–6/30/27. NIH. Total Funds Requested: $1,466,223. Title: Development of a clinically applicable tool for physicians to predict checkpoint inhibitor immunotherapy outcome in patients with melanoma brain metastases. Role: Co-I (1.2 calendar)

Past Grant Support

  • NIH/NCI, R01CA222007: miR-155 targeted therapeutics for precision medicine in lung cancer. 07/01/2018–06/30/2023. Role: MPI, 15% time. 64,153/yr DC.
  • NIH/NCI, R01CA226537: A targeted nanomedicine prototype against enzalutamide-resistant prostate cancer. 04/01/2018–03/31/2023. Role: MPI, 15% time. 108,654/yr DC.
  • NIH/NCI, U01CA213759: Targeted Therapeutics for ovarian cancer and its microenvironment treatment and theoretical modeling. 06/01/2017-05/31/2022. Role: Co-Investigator, 5% time. 20,655/yr DC. PI: Lopez-Berestein
  • NIH/NCI, U01CA196403: Imaging and Molecular correlates of progression in cystic neoplasms of the pancreas. 09/01/2015-08/31/2021. Role: Co-Investigator, 5% time. 20,008/yr DC. PI: Maitra
  • NIH/NCI, U54CA210181: Center for Immunotherapeutic Transport Oncophysics: 07/2017- 07/2021. Role: Collaborator, 10% time, 13,012/yr DC.
  • National Science Foundation‒Mathematical Sciences (Role: Overall PI, 5% time; 09/01/2017-08/31/2020). “Collaborative Research: A new multiscale methodology and application to tumor growth modeling,” $250,000. DMS-1930583
  • NIH/NIGMS P50GM085273 (PI: Wilson), The New Mexico SpatioTemporal Modeling Center (STMC) 09/01/2014-08/31/2019, 1.2 calendar. Role: Co-Investigator
  • UT STAR award - The University of Texas System – Science and Technology Acquisition and Retention (STARS). “Mathematical modeling integrated with experiments and clinical trials to understand tumor heterogeneity, drug delivery and treatment outcome” ($1,000,000). Cristini PI. 07/01/2015-06/30/2018.
  • Rochelle and Max Levit endowment for Chair in the Neurosciences ($500,000)– UTHealth 2016-2018
  • Pilot project (PIs: Koay, Cristini 2% effort), Center for Immunotherapy in Transport Oncophysics (CITO), overall PI: Ferrari. “Effects of VEGF and collagen signaling on biodistribution of tumor associated macrophages in pancreatic ductal adenocarcinoma (PDAC)” 2017-2018
  • National Science Foundation‒Mathematical Sciences/National Institute of General Medical Sciences (overall PI, 10% time; 09/15/2013-08/31/2017). “Collaborative Research: Multiscale Modeling of Mammary Gland Development,” $422,472. DMS-1562068
  • The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2014-2017 (Student: Terisse Brocato, UNM)
  • University of New Mexico Cancer Center Institutional Support.(1 full-time graduate student) Clinical trial: The Use of Mathematical Modeling to Predict Response to Neoadjuvant Anthracycline / Taxane Based Chemotherapy in Women with HER2 negative Stage II and III Breast Cancer. 12/3/2014-12/3/2016. Co-PI.
  • The New Mexico Center for the Spatiotemporal Modeling of Cell Signaling (STMC) Graduate Student Fellowship, 2014-2016. (Student: Prashant Dogra, Biomedical Sciences, University of New Mexico)
  • NIH 5U54CA151668-05 (PIs: Ferrari, Gorenstein, Cristini), Texas Center for Cancer Nanomedicine, 8/1/15-7/31/16, 2.4 calendar. Cristini Overall PI
  • 2014 Pancreatic Cancer Action Network – AACR Cancer Development Award: “Changes in Mass Transport as a Biomarker of Response in Pancreatic Cancer.” $200,000; PI: E Koay (VC Mentor, 2% time). 07/01/2014-06/30/2016.
  • Radiological Society of North America (RSNA) Seed Grant (PI: E Koay), Predicting gemcitabine delivery in human pancreatic cancer with mass transport, (VC Co-Investigator, 2.0% time) 2014-2015.
  • King Abdulaziz University Grant 54-130-35-HiCi. “A Multiscale Approach to Developing and Optimizing γδ T Cell-Based Breast Cancer Treatment” $50,000. (Consultant, 10% time) 6/1/2014-3/31/2015.
  • National Cancer Institute, CCNE: Texas Center for Cancer Nanomedicine, VC (Core co-I, 4% time). Biosimulation Core (Total Budget of Core: $750,000), 2010-2015.
  • National Cancer Institute, U54: Physical Science—Oncology Center (PS-OC): Multiscale Complex Systems Transdisciplinary Analysis of Response to Therapy, VC (Project PI, 19% time). Multiscale Cancer Modeling: From Cell Phenotype to Growth and Therapy Response (Total Budget of Project $852,000), 2009-2015.
  • National Cancer Institute, U54: Physical Science—Oncology Center (PS-OC): Center for Transport Oncophysics, VC (Core PI, 18% time) (Total Budget of Core $1,000,000), 2009-2015.
  • National Cancer Institute, U54; Integrative Cancer Biology Program (ICBP): Center for Modeling of Cancer Development, VC (Project PI, 15% time) Computational Biology: Mathematical Modeling and Computer Simulation (Total Budget of Project $750,000), 2010-2015.
  • Baylor College of Medicine (BCM): Agent Based Modeling of Cell Lineages in Breast Cancer, VC (Scientific Advisor, 0%) (Total Budget $253,948), 12/1/2010 – 02/28/2015.
  • National Cancer Institute, U54: Physical Science—Oncology Center (PS-OC): Center for Transport Oncophysics (PI: Ferrari) - Project 3: Genomic Correlates of Mass Transport Differentials, VC (Co-Investigator, 10% time), 2009-2015.
  • National Cancer Institute, U54: Physical Science—Oncology Center (PS-OC): Center for Transport Oncophysics, supplemental grant: “Clinical implications of mass transport in colorectal liver metastasis,” (VC PI, 20% time). (Total Budget $80,000). 2013-2014.
  • “Mathematical Model of Drug Transport to Determine Chemotherapeutic Outcomes in Patients with Colorectal Liver Metastases,” The New Mexico Cancer Nanoscience and Microsystems Training Center Graduate Fellowships, 2013-2014 by (Ph.D. student mentored: Romica Kerketta)
  • 2013-2014 School of Engineering Award – the Charlotte and William Kraft Graduate Fellowship (Ph.D. student mentored: Terisse Brocato).
  • NIH/NIGMS P50GM085273 (PI: Oliver), University of New Mexico Spatio Temporal Modeling Center (STMC), 0.5 calendar. Role: Co-Investigator, 08/01/11–07/31/2014.
  • NIH/NIGMS K12GM088021 (PI: Pascal), 0 calendar, Role: Research mentor, 09/01/11–08/31/2014.
  • National Science Foundation SBIR (Academic PI: VC), ($49,000), “Dynamic Infrared Imaging of Skin Cancer”, 7/1/2013-12/31/2013.
  • National Cancer Institute CTO PS-OC Pilot Project (PI: Cristini), 0.25 calendar, NIH/NCI, $100,000. Title: Predictive physical modeling of chemotherapeutic drug transport and tumor response, 04/01/2012-03/31/2013.
  • National Science Foundation—Mathematical Sciences, VC PI (6%), “Collaborative Research: Multiscale modeling of solid tumor growth,” (Total Budget $225,000), 2008-2012.
  • UNM STMC Grand Challenge Award: Modeling the spatiotemporal motor-cargo dynamics in the squid giant axon. VC (PI, 0% time). $50,000. 03/2011 – 07/2011.
  • MD Anderson Cancer Center Award: Quantification of diffusion barriers to chemotherapy in patient tissue. VC (PI, 1% time). $114,300. 11/2010 – 10/2011.
  • United States Department of Defense Innovator Award, M. Ferrari (PI, UT Health Science Center), VC (Co-I, 5%). Towards individualized breast cancer therapy: Leveraging molecular medicine with multi-stage vector technology. (Total Budget $7 Million). 03/01/2009-02/28/2010.
  • Cullen Trust for Health Care, VC PI (60%), “Virtual cancer: Reducing cancer recurrence and progression – new paradigms in cancer diagnostics and treatment through computational modeling of biological systems” (Total Budget $1.5 million). 2008-2010.
  • United States Department of Defense - Telemedicine and Advanced Research Technology Center (TATRC) / Alliance for Nanohealth (ANH). VC PI (10%), “Optimizing Delivery of Paclitaxel in Head and Neck Cancer Treatment Through Nanoparticle Delivery and Interactive Biomathematically Based Nanoparticle Designs,” (Total Budget: $45,000). 2008-2010.
  • Komen Foundation. F. Symmans (PI, MD Anderson), VC (Collaborator, 2%). Prospective Evaluation of Molecular Triaging with Pharmacogenomic Tests to Select Neoadjuvant Treatment. ($45,000). 04/01/2008 – 03/31/2009.
  • NIH—Bioengineering Research Partnerships, VC Co-I (5%), “Nanovectors for characterization and destruction of breast tumor vasculature,” (Total Budget $400,000). 2007-2010.
  • United States Department of Defense - Telemedicine and Advanced Research Technology Center (TATRC). VC Co-PI (5%), “Medical Nanovector Research and Development Center of Alliance for Nanohealth,” (Total Budget: $1.768 Million). 2007-2010.
  • United States Department of Defense - U.S. Army Medical Research and Materiel Command (USAMRMC)—The Texas Training and Technology Against Trauma and Terrorism (T5) program NCE. VC Co-PI (38%), (Total Budget $4,792,000). 2007-2008.
  • Dekk-Tech. VC PI, “Computer simulations of drug delivery to brain tumors,” ($25,000). 2007.
  • United Negro College Fund - MERCK Graduate Science Research Dissertation Fellowship, VC Mentor, “An integrated biological and computational tumor model,” $52,000 (PI: Graduate Student N DeMagalhaes). 2007-2009.
  • NIH Graduate Fellowship, VC Mentor, $60,000 (PI: Graduate Student N DeMagalhaes). 2007-2009.
  • NIH—National Cancer Institute, VC Co-PI (10%, “R01: Clinical and Microarray Data Predict Lung Cancer Outcomes”. (Total Budget: $1 million). 2006-2009.
  • University of California Discovery Grant - IT for life sciences/ORQIS Medical, VC PI, “Analysis and Optimization of Blood Circuit Components Using Adaptive CFD,” $188,000. 2005-2007.
  • NIH - National Cancer Institute, VC Co-PI, “R01: Multidisciplinary studies of tumor vascularity and microenvironment,” $180,000. 2005-2006.
  • National Science Foundation—Mathematical Sciences, VC PI (10%), “Collaborative Research: Analysis and properties of co-continuous blends-A numerical and experimental investigation,” $132,000. 2003-2006.
  • University of California at Irvine, Center for Complex Biological Systems Seed Grant, VC PI, “Computational and Experimental Modeling of Tumor Spheroid Growth and Photodynamic Therapy: A First Step Towards an In Vivo Model,” $11,000. 2003-2004.
  • University of California at Irvine, Biomedical Engineering/College of Medicine Seed Grant, VC PI, “Modeling breast tumor morphology to predict drug response,” $15,000. 2003-2004.

Submitted Proposals (since I joined HMRI on 07/09/2018; selected)

  • NIH/R01 (MPIs: Wang, Ozpolat). 7/1/23–6/30/28. NIH. Total Funds Requested: $2,814,645. Title: Development of KRAS-targeted siRNA- or miRNA-mediated nanotherapeutics for pancreatic ductal adenocarcinoma. Role: Co-I (1.2 calendar)
  • NIH/R01 (MPIs: Ozpolat, Wang). 7/1/23–6/30/28. NIH. Total Funds Requested: $3,305,000. Title: Dual-targeting of KRAS and PDL1 with novel miRNA nanotherapeutics for targeted cancer treatment. Role: Co-I (1.2 calendar)
  • NIH/R01 (MPIs: Ozpolat, Wang). 7/1/23–6/30/27. NIH. Total Funds Requested: $2,962,660. Title: Novel therapeutic approach for co-targeting of two oncogenic kinases in Triple negative breast cancer. Role: Co-I (1.2 calendar)
  • NIH/U01 resubmission (MPIs: Wang, Chung). 7/1/23–6/30/26. NIH. Total Funds Requested: $1,466,223. Title: Development of a clinically applicable tool for physicians to predict checkpoint inhibitor immunotherapy outcome in patients with melanoma brain metastases. Role: Co-I (1.2 calendar)
  • NIH/R21 (PI: Dogra). 7/1/23 – 6/30/25. NIH. Total Funds Requested: $444,125. Title: Mechanistic modeling-based clinical trial simulator to support vaccine development. Role: collaborator
  • NIH/R01 (PI: Goel). 7/1/23 – 6/30/28. NIH. Total Funds Requested: $198,202. Title: Ultrasmall chemo-radiopharmaceutical nanoconjugates for triple negative breast cancer. Role: collaborator
  • NIH R01 (MPI: Villapol, Leonard). 4/1/23 – 3/31/28. NIH. Total Funds Requested: $3,114,617. Title: Non-viral CRISPR-lipid nanoparticles-based treatment for traumatic brain injury-induced inflammation in vivo. Role: Collaborator
  • NIH R01 (MPIs: Staquicini, Dogra). 4/1/23 – 3/31/28. NIH. HM budget: $494,910. Title: Targeted Phage Display Technology for Pulmonary Delivery and Immunotherapy Approaches. Role: Collaborator
  • NIH R21 (PI: Puri; co-I: Dogra). 4/1/23 – 3/31/25. NIH. HM budget: $81,660. Title: Development of an iontophoresis-coupled microneedle skin patch of naloxone for rapid and sustained reversal of fentanyl overdose. Role: Collaborator
  • NIH/R01 (MPIs: Wang, Chung). 4/1/23–3/31/28. NIH. Total Funds Requested: $3,097,714. Title: Integration of multimodal imaging and biofluid laboratory measurements for mathematical prediction of checkpoint inhibitor immunotherapy outcome in patients with melanoma brain metastases. Role: Co-I (1.2 calendar)
  • NIH 1R01CA269639-01A1 (MPIs: Wang, Chen). 9/1/22–8/31/27. NIH. Total Funds Requested: $3,463,440. Title: Development of quantitative early indicators for predicting breast cancer response to immunotherapy treatment using mathematical modeling and preclinical models. Role: Co-I (1.2 calendar)
  • Concept Award (PI: Filgueira). 9/1/22 – 8/31/24. DoD. Funds Requested: $161,499. Title: Nanoparticle-mediated Zonal Delivery of Therapeutics to the Tumor Microenvironment. Role: Co-Investigator
  • DoD/ Investigator-Initiated Research Award. 7/1/22-6/30/26. DoD. Total Funds Requested: $1,285,542. Title: Microneedle dermal patch for amiloride in animals. Role: Co-I (0.24 calendar)
  • DOD W81XWH-21-MRP-TRA (PI: Ekmekcioglu). 4/1/22–3/31/25. DOD. Total Funds Requested: $1,050,000. Title: Innate immune markers contribution in the tumor microenvironment architecture predicts response to immunotherapy in acral melanomas. Role: MPI (0.6 calendar)
  • NIH/U54 ROBIN (MPIs: Koay, Azad, Javle, Cristini). 7/1/22–6/30/27. NIH. Total Funds Requested: $ 8,109,461. Title: MD Anderson/Johns Hopkins Cholangiocarcinoma ROBIN Center. Role: MPI/Data Science Core Co-Leader (1.2 calendar)
  • NIH/U01 (MPIs: Wang, Chung). 4/1/22–3/31/25. NIH. Total Funds Requested: $1,453,500. Title: Development of a clinically applicable tool for physicians to predict patient outcome in melanoma brain metastases. Role: Co-I (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Chung). 4/1/22–3/31/27. NIH. Total Funds Requested: $3,671,180. Title: Identification of immunotherapy response indicators in breast cancer treatment through mathematical modeling and preclinical testing. Role: Co-I (1.2 calendar)
  • NIH/R01 Resubmission (MPIs: Ozpolat, Wang). 4/1/22–3/31/27. NIH. Total Funds Requested: $2,250,000. Title: Development of targeted therapeutics for pancreatic cancer. Role: Co-I (1.2 calendar)
  • Delta Tissue Program (PIs: Cristini, Plodinec). 10/1/21–9/30/24. Wellcome Leap Foundation. Total Funds Requested: $2,976,000. Title: Predicting cell states and transitions within the tumor microenvironment in the breast cancer response to chemotherapy and immunotherapy using a combined nanomechanical profiling, imaging, and mathematical modeling approach. Role: PI (1.2 calendar)
  • NIH/K25 (PI: Butner). 9/1/2021-8/30/2026. NIH. Total Funds Requested: $436,275. Title: Designing a predictive clinical tool to improve patient treatment strategies: integration of multiparametric imaging and mathematical modeling to predict patient outcome in melanoma brain metastases
  • NIH/R01 (MPIs: Chung, Hussein, Cristini). 7/1/21–6/30/26. NIH. Total Funds Requested: $4,120,000. Title: Personalized multimodality treatment of melanoma brain metastases following immunotherapy using mathematical modeling. Role: MPI (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Ozpolat). 7/1/2021 – 6/30/2026. NIH. Total Funds Requested: $2,306,675. Title: Understanding and optimizing EF2K-targeted nanotherapeutics for pancreatic ductal adenocarcinoma. Role: Co-I (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Chen). 7/1/2021 – 6/30/2026. NIH. Total Funds Requested: $3,671,180. Title: Development of mathematical markers for early identification of immunotherapy response in ovarian cancer treatment with preclinical testing. Role: Co-I (1.2 calendar)
  • NIH/U01 (MPIs: Cristini, Chen, Wang, Thompson). 7/1/21–6/30/26. NIH. Total Funds Requested: $4,120,000. Title: Clinically validated physical biomarkers drive treatment outcome prediction in breast cancer and lung metastases. Role: Contact PI (1.2 calendar)
  • NIH/P20 (MPIs: Chang, Esnaola, Gomez). 7/1/21–6/30/26. NIH. Total Funds Requested: $4,120,000. Title: The Houston Methodist Cancer Health Disparity P20 SPORE planning grant. Role: Co-I of Project 2 (1.2 calendar)
  • NIH/R01 (MPIs: Chung, Cristini). 7/1/21–6/30/26. NIH. Total Funds Requested: $4,127,000. Title: Personalization of Treatment for Patients Receiving Immunotherapy for Melanoma Brain Metastases using Imaging and Fluid-Based Mathematical Modeling. Role: MPI (1.2 calendar)
  • NIH/U01 (MPIs: Cristini, Chen, Wang, Thompson). 9/1/20–8/31/25. NIH. Total Funds Requested: $4,120,000. Title: Clinically validated physical biomarkers drive treatment outcome prediction in breast cancer and lung metastases. Role: Contact PI (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Sood). 9/1/20–8/31/25. NIH. Total Funds Requested: $2,155,000. Title: Development, experimental testing, and retrospective clinical validation of a mechanistic model of immunotherapy in ovarian cancer treatment. Role: Co-Investigator (1.2 calendar)
  • DOD/BCRP (MPIs: Thompson, Plodinec). 9/1/20–8/31/23. DOD. Total Funds Requested: $2,000,000. Title: Proteogenomic and nanomechanical biomarkers in primary breast cancer. Role: Collaborator (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Ozpolat). 4/1/21–3/31/26. NIH. Total Funds Requested: $2,306,675. Title: Understanding and optimizing EF2K-targeted nanotherapeutics for pancreatic ductal adenocarcinoma. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (MPIs: Wang, Chen). 4/1/21–3/31/26. NIH. Total Funds Requested: $3,671,180. Title: Development of "mathematical markers" for early identification of immunotherapy response in ovarian cancer treatment with preclinical testing. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (PIs: Wang, Ozpolat). 4/1/20–3/31/26. NIH. Total Funds Requested: $2,55,000. Title: Naonparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (PIs: Ozpolat, Wang). 7/1/20–6/30/25. NIH. Total Funds Requested: $2,250,000. Title: Novel combinatorial therapies for pancreatic cancer. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (MPIs: Ozpolat, Calin). 4/1/20–3/31/25. NIH. Total Funds Requested: $2,770,000. Title: miR-484 targeted therapeutics for breast cancer. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (MPIs: Chen, Wang, Chang). 4/1/20–3/31/25. NIH. Total Funds Requested: $3,550,000. Title: Identification of clinically relevant tumor immune microenvironment biomarkers for predicting immunotherapy outcome in lung and breast cancer patients. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (PI: Ozpolat). 4/1/20–3/31/25. NIH. Total Funds Requested: $2,500,000. Title: Development of EF2K targeted Dual effect nanotherapeutics for breast cancer. Role: Co-Investigator (0.5 calendar)
  • NIH/R01 (PIs: Wang, Ozpolat). 7/1/20–6/30/25. NIH. Total Funds Requested: $2,250,000. Title: A combined experimental and mathematical modeling approach to optimizing EF2K-targeted nanotherapeutics for pancreatic ductal adenocarcinoma. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (PIs: Wang, Ozpolat). 7/1/20–6/30/25. NIH. Total Funds Requested: $2,55,000. Title: Naonparticle delivery of miRNA-based therapeutics to overcome clinical challenges in triple negative breast cancer. Role: Co-Investigator (1.8 calendar)
  • CPRIT IIRA (MPIs: Chang, Chen). 3/1/20–2/28/23. NIH. Total Funds Requested: $3,550,000. Title: A translational approach to identification of clinically applicable biomarkers for predicting immunotherapy outcome in lung and breast cancer patients. Role: Co-Investigator (1.2 calendar)
  • NIH/U54 RFA-CA-19-013 (MPIs: Cristini, Chen, Hong). 9/1/19–8/31/24. NIH. Total Funds Requested: $7,161,919. Title: Houston Center for Cancer ImmunoTherapy Engineering (HC-CITE). Role: Overall PI, contact (3.0 calendar)
  • NIH/R01 (PI: Ozpolat). 7/1/19–6/30/24. NIH. Total Funds Requested: $3,500,000. Title: Development of KRAS targeted dual effect nanotherapeutics. Role: Co-Investigator (1.2 calendar)
  • NIH/P01 (PI: Calin, Croce, Slack). 7/1/18–6/30/23. NIH. Total Funds Requested: $5,000,000. Title: MicroRNA targeted therapeutics for precision medicine in human cancers. Role: Bioinformatics & Biostatistics and Mathematics Core Director (1.2 calendar)
  • NIH/R01 IRCN, PAR-17-240 (MPIs: Ozpolat, Maitra, Volk, Cristini, Wang). 4/1/19–3/31/24. NIH. Total Funds Requested: $3,250,000. Title: Development of miR-based nanotherapeutics for precision medicine in pancreatic cancer. Role: MPI (1.44 calendar)
  • NIH/R01 (MPIs: Calin, Ozpolat, Wang). 4/1/19–3/31/24. NIH. Total Funds Requested: $3,500,000. Title: Development of KRAS targeted dual effect nanotherapeutics. Role: Co-Investigator (1.2 calendar)
  • NIH/R01 (MPIs: Lopez-Berestein, Ozpolat). 4/1/19–3/31/24. NIH. Total Funds Requested: $2,750,000. Title: Development of EF2K targeted Dual effect nanotherapeutics for breast cancer. Role: Co-Investigator (1.2 calendar)
  • CPRIT/IIRA (PI: Ozpolat, Wang). 3/1/19–2/28/22. NIH. Total Funds Requested: $900,000. Title: Development of Dual effect nanotherapeutics for Breast Cancer. Role: Collaborator (0.5 calendar)

Other Submitted Proposals

  • DOD BCRP Breakthrough Award Level 2 Award (PIs: Sen). 6/1/18–5/31/21. DOD. Total Funds Requested: $1,540,000. Title: EF1A2-SCF Complex Regulated Ubiquitination Pathway as Predictor of Prognosis and Drug Response in Breast Cancer. Role: Co-I (10% effort)
  • NIH/R01 (PI: Zhou). 10/1/18 – 9/30/23. NIH. Total Funds Requested: $2,250,000. Title: Systematically understanding the immunity leading to castration-resistant prostate cancer progression. Role: Co-I (10% effort)
  • DOD PCRP Impact Award (PI: Wadih, Brinker, Cristini). 10/1/18 – 9/30/21. DOD. Total Funds Requested: $2,000,000. Title: Development of a targeted nanoparticle prototype in treating enzalutamide-resistant prostate cancer. Role: Partnering PI (2.4 calendar)
  • NIH/R01 (PIs: Ozpolat, Lopez-Berestein, Volk, Cristini, Wang). 7/1/18 – 6/30/23. NIH. Total Funds Requested: $2,402,996. Title: Highly Targeted therapies for pancreatic cancer. Role: MPI (10% effort)
  • NIH/U01 MSM (PI: Cristini, Wang, Lowengrub). 4/1/18 – 3/31/23. Title: Multiscale Modeling of the Progression of Pancreatic Neoplasms to Invasive Pancreatic Cancer. Role: Overall PI (15% effort)
  • CPRIT Computational Biology (PI: Cristini, Koay). 3/1/18 – 2/28/21. Title: Modeling Immunotherapy Response in Lung and Colorectal Cancers. Role: PI (10% effort)
  • NIH/U01 IRCN (PIs: Pasqualini, Arap, Brinker and Cristini). 9/1/17 – 8/31/22. NIH. Total Funds Requested: $2,500,000. Title: A targeted nanomedicine prototype against enzalutamide-resistant prostate cancer. Role: Co-PI (1.8 calendar)
  • NIH/R01 (PIs: Ozpolat, Volk, Cristini, Wang). 9/1/17 – 8/31/22. NIH. Total Funds Requested: $1,850,000. Title: Highly Targeted Therapies for Pancreatic Cancer. Role: Co-PI (15% effort)
  • DOD LCRP Translational Research Partnership (PI: Welsh, Cristini), Pre-application. Title: Quantitative understanding of molecular and cellular characteristics of responders and non-responders in small cell lung cancer treatment. Role: PI
  • NIH/R21 (PIs: Fuentes, Elsayes, Wang). 9/1/17 – 8/31/19. NIH. Total Funds Requested: $$275,000. Title: Mathematical modeling of treatment response of hepatocellular carcinoma. Role: Co-I (5% effort)
  • NIH/R01 (PI: Ozpolat). 7/1/17 – 6/30/21. NIH. Total Funds Requested: $1,850,000. Title: Development of Targeted Therapies for Pancreatic Cancer. Role: Co-Investigator (6% effort)
  • NIH R01 (PIs: Cristini, Wang, Curley). 7/1/17 – 6/30/22. NIH. Total Funds Requested: $2,929,866. Title: Development of a quantitative method for predicting drug response of hepatocellular carcinoma (HCC) to non-invasive radiofrequency hyperthermia (Ni-RFH) and chemotherapy. Role: PI (2.4 calendar)
  • NIH/U01 CTSA (PIs: Ozpolat, Volk). 6/1/17 – 5/31/22. NIH. Total Funds Requested: $2,250,000. Title: Highly Targeted Therapies for Pancreatic Cancer. Role: Co-I (15% effort)
  • DOD BCRP Breakthrough Level 3 (PI: Sen). 5/1/17 – 4/30/21. NIH. Total Funds Requested: $1,250,000. Title: Integrated Molecular and Imaging Biomarker Signatures of Prognosis for High Risk Breast Ductal Carcinoma In Situ (DCIS). Role: Co-I (8% effort)
  • Human Frontier Science Program, International (PIs: Caserta, Cristini, Curley). 4/1/17 – 3/31/22. Total Funds Requested: $1,000,000. Title: A novel microfluidic approach to investigate tumor micro-metabolism and invasion. Role: PI (1.2 calendar)
  • NIH/U01 PSOP (PI: Ennio Tasciotti). 4/1/17 – 3/31/22. NIH. Total Funds Requested: $2,500,000. Title: Dietary impact on osteosacroma cellular, metabolic and pharmaceutical transport. Role: Co-Investigator (10% effort)
  • NIH/U01 MSM (PIs: Cristini, Wang, Lowengrub, Koay). 4/1/17 – 3/31/22. NIH. Total Funds Requested: $2,500,000. Title: Multiscale Modeling of the Progression of Pancreatic Neoplasms to Invasive Pancreatic Cancer. Role: PI (15% effort)
  • NIH/R21 (PIs: David Fuentes, Khaled Elsayes, Zhihui Wang). 4/1/17 – 3/31/19. NIH. Total Funds Requested: $275,000. Title: Mathematical modeling of drug response of hepatocellular carcinoma to targeted therapy. Role: Co-I (5% effort)
  • NIH/R21 (PIs: Wang, Kesari). 4/1/17 – 3/31/19. NIH. Total Funds Requested: $275,000. Title: A multiscale analysis to initial selection, testing, and validation of drug targets in glioblastoma. Role: Co-I (10% effort)
  • CPRIT Computational Biology (Co-PIs: Cristini, Koay). 12/1/16 – 11/30/19. CPRIT. Total Funds Requested: $900,000. Title: Modeling Immunotherapy Response in Lung Cancer. Role: PI (1.8 calendar)
  • NIH/U01 Early Detection (PI: Subrata Sen). 9/1/16 – 8/31/21. NIH. Total Funds Requested: $2,000,000. Title: Early Detection Biomarkers of Pre-malignant High-risk Breast Atypical Ductal Hyperplasia (ADH) and Ductal Carcinoma In Situ (DCIS). Role: Co-Investigator (5% effort)
  • NIH U01 (PIs: Cristini, Freyer, Shreve). 7/1/16 – 6/30/21. NIH. Total Funds Requested: $2,727,200. Title: An Integrated Model of Chemical, Physiological and Metabolic Gradients in Solid Tumors. Role: PI (3.0 calendar)
  • NIH U54 (PIs: Curley, Wilson). 7/1/16 – 6/30/21. NIH. Total Funds Requested: $11,483,811. Title: Center for Translational Electromagnetic Oncology (CTEO). Role: Mathematical Modeling Core PI (3.0 calendar)
  • NSF Division of Mathematical Sciences (PIs: Cristini, Wang). 7/1/16 – 6/30/19. NSF. Total Funds Requested: $270,000. Title: Multiscale modeling of tumor growth, invasion and microenvironmental interactions. Role: PI (1.2 calendar)
  • CPRIT Computational Biology (Co-PIs: Cristini, Koay). 3/1/16 – 2/28/19. CPRIT. Total Funds Requested: $450,000. Title: Integrated mechanistic mathematical modeling and quantitative imaging analyses for human. Role: PI (1.2 calendar)
  • NIH U54 CCNE (Co-PIs: Sood, Lopez, Gorenstein). 9/1/15 – 8/31/20. NIH. Total Funds Requested: $ 13,000,000. Title: Texas Center for Cancer Nanomedicine. Role: Co-Investigator (Biomathematics Core; 1.2 calendar)

Proposals Planned (to be submitted)

(Ongoing)

  • DOD W81XWH-resubmission (MPIs: Ekmekcioglu, Koay, Cristini). DOD. Total Funds Requested: $1,050,000. Title: Innate immune markers contribution in the tumor microenvironment architecture predicts response to immunotherapy in acral melanomas. Role: MPI (0.6 calendar)
  • R01 (Wang, Ozpolat, Cristini) (Houston Methodist), PAR-20-284. Research topic: To optimize miR-873-based nanotherapeutics and complete preclinical safety and efficacy studies in clinically relevant TNBC and PDAC models. To be submitted in February 2024
  • R01 (Chung, Wang, Cristini) (MD Anderson). Research topic: Development of a multiscale mathematical model for optimizing combination therapy based on immunotherapy and radiation therapy in patients with melanoma brain metastases. To be submitted in February 2024
  • NIH/R01 resubmission (MPIs: Chung, Hussein, Cristini). NIH. Total Funds Requested: $4,127,000. Title: Personalization of Treatment for Patients Receiving Immunotherapy for Melanoma Brain Metastases using Imaging and Fluid-Based Mathematical Modeling. To be submitted March 2024
  • R01 (Wang, Ozpolat, Cristini) (Houston Methodist), PAR-22-071. Research topic: To develop clinically applicable, safe, effective and highly specific KRAS-targeted RNAi-nanotherapeutics for the molecular targeting of mutated KRAS oncogene and translate them to clinical trials for treatment of pancreatic cancer patients. To be submitted in February 2024
  • NIH/R01 (Resubmission) (MPIs: Wang, Sood). Title: Development, experimental testing, and retrospective clinical validation of a mechanistic model of immunotherapy in ovarian cancer treatment. To be submitted March 2024
  • R01 (Wang, Chen, Cristini) (Houston Methodist). Research topic: Development of quantitative early indicators for predicting breast cancer response to immunotherapy treatment using mathematical modeling and preclinical models. To be submitted in February 2024
  • NIH/R01 (MD Anderson) (Koay, Cristini et al.). Topic: Prediction of the therapeutic efficacy of immunotherapy for pancreatic cancer by accounting for the principles of physics and biology in cancer treatment. To be submitted February 2024
  • NIH/R01 (MD Anderson) (Wang, Ozpolat, Calin et al.). Topic: A systems biology approach to understand cell to cell communication by TP53 regulation of exosomal non-coding RNAs in human cancers. To be submitted February 2024. (Ongoing)
  • NIH/ R21, RFA-CA-22-021 (Butner, Wang, Chung, Cristini). Topic: Hybridizing mechanistic mathematical model with deep learning methods to predict individual cancer patient survival after immune checkpoint inhibitor therapy. To be submitted October 2023
  • NIH/R01, PAR-21-166: Academic-Industrial Partnerships for Translation of Technologies for Diagnosis and Treatment (AIP – R01). With MD Anderson Cancer Center (Plodinec, Koay, Hong, Welsh et al.). Topic: Development of clinically measureable mathematical markers for prognostic identification of patient response to immunotherapy. To be submitted February 2024
  • NIH/U01, PAR-22-242: Bioengineering Research Grants (BRG). With HM (Chen et al.), MD Anderson Cancer Center (Plodinec, Koay, Hong, Welsh et al.), Baylor College of Medicine (Thompson et al.). Topic: An integrated mathematical modeling and clinical approach to cancer treatment prediction. To be submitted June 2024
  • NSF 22-1 (MPIs: Cristini, Lowengrub). NSF. Total Funds Requested: TBD. Title: Mathematical modeling of biophysical transport of immune infiltrates in lung cancer. Role: Co-Leader. To be submitted September 2024
  • NIH/U54 ROBIN (MPIs: Koay, Azad, Javle, Cristini). NIH. Total Funds Requested: $8,109,461. Title: MD Anderson/Johns Hopkins Cholangiocarcinoma ROBIN Center. Role: MPI/Data Science Core Co-Leader (1.2 calendar). To be submitted October 2024

PUBLICATIONS

A. Abstracts (selected)

1. P. Dogra, J. Cave, J.D. Butner, V. Cristini, Z. Wang. Multiscale Modeling-Identified Synergistic Combinations of Anti-microRNA-155 and Standard-of-Care Drugs for Improved Outcomes in Non-small Cell Lung Cancer, in AAPS PharmSci 360 Conference. 2023: Orlando, FL.

2. M. Farhat, J.D. Butner, Z. Wang, M. Shanker, W. Talpur, S. Thrower, L. Erickson, J. Bronk, H. Langshaw, B.L. Tran, D. Yadav, A. Elliott, C. Wang, H.A. Tawbi, V. Cristini, C. Chung. Evaluating novel imaging-based mathematical modeling prediction of immunotherapy response by individual melanoma brain metastasis and patient prognosis. Journal of Clinical Oncology, 2023. 41(16_suppl): p. e14013-e14013.

3. Peláez MJ, Ramírez JR, Shen Y, Birur RM, Schiavone C, Cristini V, Puri A, Wang Z, Dogra P*. “Mechanistic modeling for optimal design of dissolvable microneedle-based patches for transdermal drug delivery” Proceedings of the 2021 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society;2023 Jul; Sydney, Australia.

4. Cave J, Shinglot V, Butner JD, Cristini V, Bulent O, Calin GA, Dogra P*, Wang Z*. “Mechanistic modeling of anti-microRNA-155 therapy combinations in lung cancer” Proceedings of the 2021 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society;2023 Jul; Sydney, Australia.

5. Dogra P, Shinglot V, Cave J, Cristini V, Wang Z. Muliscale Mechanisic Modeling of Nanoparticle-Delivered Anti-microRNA-155 Therapy and Its Combination With Standard-of-Care Drugs in Lung Cancer. 17th U. S. National Congress on Computational Mechanics, Albuquerque, NM, USA. July 23-27, 2023.

6. M. Farhat, J. D. Butner, M. Shanker, W. Talpur, S. Thrower, L. Erickson, D. Yadav, B. Tran, J. Bronk, H. Langshaw, A. Elliott, Z. Wang, V. Cristini, and C. Chung. Evaluating novel imaging-based mathematical modeling prediction of immunotherapy response by individual melanoma brain metastasis and patient prognosis. ASCO Annual Meeting 2023, June 2-6, 2023.

7. Akeemat T, Puri A, Peláez MJ, Dogra P, Rapidly Development of an Iontophoresis-Coupled Microneedle Skin Patch of Naloxone for Emergency Treatment of Opioid Overdose. 2023 Appalachian Student Research Forum, Johnson City, TN, USA. April 25, 2023

8. Capuani S, Hernandez N, Paez-Mayorga J, Dogra P, Wang Z, Cristini V, Chua CYX, Nichols JE, Grattoni A. Local Delivery of Drugs in a 3D Bioengineered Subcutaneous Niche: Biodistribution and Pharmacokinetics. 8th Nano Today Conference. April 22-25, 2023. San Diego, CA, USA

9. Nizzero S, Zaugg G, Zhang L, Xu Y, Peláez MJ, Mariam Gachechiladze Gchechiladze M, Dogra P, Menegaz BA, Jordan LB, Purdie CA, Quinlan PR, Nagi C, Sepulveda KA, Oertle P, Appenzeller A, Chen SH, Loparic M, Wang Z, Cristini V, Plodinec M, Thompson AM. Heterogeneity of Mechano-Physical Biomarkers Drive Outcome in Breast Cancer: A Quantitative Spatial Analysis Approach. Gordon Research Conference Physical Sciences of Cancer: Physical Oncology Across Biological Scales: Signals, Systems, Forces and Fluxes, Galveston, TX, USA. Feb 5-10 2023. Invited talk.

10. Nizzero S, Gchechiladze M, Zaugg G, Zhang L, Xu Y, Peláez MJ, Dogra P, Menegaz BA, Jordan LB, Purdie CA, Quinlan PR, Nagi C, Sepulveda KA, Oertle P, Appenzeller A, Chen SH, Loparic M, Wang Z, Cristini V, Plodinec M, Thompson AM. Highly Multiplexed Spatial Analysis of Breast Cancer Tissues Reveals Functional Mechanical Drivers for Long Term Patient Outcome. Gordon Research Seminar Physical Sciences of Cancer: Quantitative Hallmarks of the Tumor Microenvironment, Galveston, TX, USA. Feb 5-10 2023. Invited talk.

11. Nizzero S, G Srivastava, P Oertle, M Wasley, M Kim, Appenzeller T, Barsoumian H, Loparic M, Wang Z, A Cortez, N Puebla, P Dogra, Cristini V, M Plodinec M, Welsh. Nanomechanical Signature of Low Dose Radiation-induced Tumor Stroma Remodulation Mediates Tumor Response in Lung Adenocarcinoma. Gordon Research Seminar Physical Sciences of Cancer: Quantitative Hallmarks of the Tumor Microenvironment, Galveston, TX, USA. Feb 5-10 2023. Invited talk.

12. Capuani S, Hernandez N, Paez-Mayorga J, Dogra P, Wang Z, Cristini V, Chua CYX, Nichols JE, Grattoni A. Biodistribution of locally delivered drugs in a 3d bioengineered subcutaneous niche. 7th Bioengineering & Translational Medicine Conference, Boston, MA, USA. December 14-16, 2022.

13. Nizzero S, Zhang L, Xu Y, Peláez MJ, Dogra P, Menegaz BA, Jordan LB, Purdie CA, Quinlan PR, Nagi C, Sepulveda KA, Oertle P, Appenzeller A, Chen SH, Loparic M, Wang Z, Cristini V, Plodinec M, Thompson AM. Spatial patterns of microenvironmental biomarkers drive long-term breast cancer outcome. American Association of Cancer Research, New Orleans, LA, USA. April 8-13 2022. Cancer Research 82 (12S), 1963, 2022.

14. Dogra P, Schiavone C, Caserta S, Wang Z, Cristini V. Mathematical modeling identifies optimal dosing schedules for COVID-19 vaccines to minimize breakthrough infections. American Association of Pharmaceutical Scientists PharmSci 360 Conference, Boston, MA, USA. October 16-19, 2022.

15. Farhat M., JD Butner, S Thrower, L Erickson, Z Wang, V Cristini, D Yadav, B Tran, J Bronk, H Langshaw, A Elliott, C Chung, Growth Kinetic Mathematical Modeling to Predict Individual Melanoma Brain Metastasis Response to Immunotherapy, in Radiological Society of North America 108th Scientific Assembly and Annual Meeting. 2022: Chicago, IL.

16. Dogra P, Ruiz Ramírez J, Butner JD, Peláez MJ, Cristini V, Wang, Z, 2021. A Multiscale Model to Identify Limiting Factors in Nanoparticle-Based miRNA Delivery for Tumor Inhibition. Proceedings of the 2021 43nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society;2021 Oct-Nov; Guadalajara, Mexico.

17. Dogra P., Peláez J. M., Ramirez, J.R., Sinha, K., Butner, J.D., Cristini, V., Wang Z. “Investigating the role of innate immunity in the control of SARS-CoV-2 infection using a mathematical model” American Association of Pharmaceutical Scientists PharmSci 360 Conference. 2021.

18. Dogra, P., Ramírez, J.R., Peláez, M.J., Butner, J.D., Cristini, V., Wang, Z. Translational mechanistic modeling for treatment optimization of nanoparticle-delivered miRNA-22 therapy in triple negative breast cancer. 9th Annual Houston Methodist Cancer Symposium. Virtual. 2021.

19. KCE Tallawi, D Kitkungvan, J Xu, V Cristini, EY Yang, MA Quinones, ... Potential explanation for disproportionate left ventricular enlargement in Barlow's disease: insights from cardiovascular magnetic resonance. Journal of the American College of Cardiology 75 (11_Supplement_1), 2128-2128, 2020

20. Dogra, P., Peláez J. M., Ramirez, J.R., Butner, J.D., Cristini, V., Wang Z. “Identifying parameters to improve the pharmacokinetics and tumor delivery efficiency of nanomedicine”. Special poster presentation session at the American Association of Pharmaceutical Scientists PharmSci 360 Conference. 2020.

21. D.A. Anaya, J.G. Wilkes, P. Dogra, Z. Wang, M. Haider, J. Ehab, D.K. Jeong, M. Ghayourim, G.Y. Lauwers, K. Thomas, R. Kim, J.D. Butner, S. Nizzero, J.R. Ramirez, J.B. Fleming, V. Cristini, Tumor-Site Chemotherapy Concentration Predicts Response To Treatment In Patients With Colorectal Liver Metastasis: A New Paradigm For Individualized Cancer Care. HPB, 2020, 22(10).

22. P Dogra, MJ Peláez, JR Ramírez, JD Butner, V Cristini, Z Wang, “Identifying parameters to improve the pharmacokinetics and tumor delivery efficiency of nanomedicine.” PharmSci360, 2020.

23. Dogra P, Chuang Y-L, Butner JD, Cristini V, Wang Z. 2020. Investigating the Effect of Aging on the Pharmacokinetics and Tumor Delivery of Nanomaterials using Mathematical Modeling. 42nd Annual International IEEE Engineering in Medicine and Biology Society (EMBC) Conference. Montreal, Canada. July 20-24, 2020.

24. Dogra P, Chuang Y-L, Butner JD, Ramirez JR, Cristini V, Wang Z. 2019. A multiscale mathematical model to study nanomedicine delivery in solid tumors. American Association of Pharmaceutical Scientists (AAPS) 2019 PHARMSCI 360 Conference. San Antonio, TX, USA. November 3-6, 2019.

25. Dogra P, Chuang Y-L, Butner JD, Cristini V, Wang Z. 2019. Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors. 41st Annual International IEEE Engineering in Medicine and Biology Society (EMBC) Conference. Berlin, Germany. July 23-27, 2019.

26. C Wang, D Elganainy, M Zaid, J Butner, V Cristini, E Koay. “Mass Transport Model of Radiation Response: Calibration and Application to Chemoradiation for Pancreatic Cancer”. International Journal of Radiation Oncology• Biology• Physics, 103:5, E48–E49, April 2019.

27. Butner JD, Cristini V, Wang Z. Multiscale modeling of ductal carcinoma in situ. The 63rd Annual Meeting of the Biophysical Society. Baltimore, MD. March 2-6, 2019. Biophysical J 116(3), 322a, 2019.

28. Butner JD, Cristini V, Wang Z. 2018. Understanding Ductal Carcinoma In Situ Invasion using a Multiscale Agent-Based Model. The 40th Annual International IEEE EMBS Conference. Honolulu, HI, USA.

29. S Curley, V Cristini, A novel mechanistic mathematical model of the heat equation and energy balance for absorption of non-invasive radiofrequency (RF) energy in biologic tissues. Society for Thermal Medicine annual meeting 2018.

30. Butner JD, Cristini V, Wang Z. 2017. Development of a Three Dimensional, Multiscale Agent-Based Model of Ductal Carcinoma In Situ. 39th Annual International IEEE Engineering in Medicine and Biology Society (EMBC) Conference. Jeju Island, Korea. Pp. 86-89.

31. Y Lee, V Cristini, GR Varadhachary, M Katz, H Wang, P Bhosale, EP Tamm, JB Fleming, EJ Koay, 2016/10/1, Quantitative Computed Tomography Analysis Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. International Journal of Radiation Oncology• Biology• Physics, 96, 2, E199, Elsevier

32. Butner, J., Cristini, V., Wang, Z. Development of a Three Dimensional, Lattice-free Multiscale Model of the Mammary Terminal End Bud. 38th Annual International IEEE EMBS Conference, Orlando, FL, US. August 16-20, 2016

33. Butner, J., Cristini, V., Wang, Z. A Modeling Approach to Study the Normal Mammary Gland Growth Process. 37th Annual International IEEE EMBS Conference. Milan, Italy. August 25-29, 2015.

34. Simbawa, E., Cristini, V. 2015 The 4th International Conference on Pure and Applied Mathematics (ICPAM 2015). Roma, Italy, July 16-17, 2015.

35. Koay, E.J., Cristini, V., Fleming, J.B., Ferrari, M., Crane, C.H. Advanced imaging analysis and mechanistic mathematical oncology in human pancreatic cancer. 36th Annual International IEEE EMBS Conference Chicago, IL, US. August 26-30, 2014.

36. Wang, Z., Kerketta, R., Chuang, Y.L., Cristini, V. Development of a Diffusion-Based Mathematical Model for Predicting Chemotherapy Effects. 36th Annual International IEEE EMBS Conference. Chicago, IL, US. August 26-30, 2014.

37. Dogra, P., Townson, J., Chuang, Y.L., Wang, Z., Brinker, C.J., Cristini, V. “Understanding and Optimizing Intravascular Nano-Bio Interactions with Mathematical Modeling.” The Eighth q-bio Conference. Santa Fe, NM, US. August 13-16, 2014.

38. Kerketta, R., Butner, J., Brocato, T., Dogra, P., Day, A., John, J., Chuang, Y.L., Wang, Z., Curley, S., Cristini, V. Predicting chemotherapeutic outcomes in patients with colorectal cancer liver metastases. The Eighth q-bio Conference. Santa Fe, NM, US. August 13-16, 2014.

39. Bearer, E.L., Wang, Z., Cristini, V. Mathematical modeling and correlation of Histopathology with perfusion-contrast CT for prediction of vascular permeability and chemotherapeutic diffusion parameters. Minisymposium - Cancer Inflammation Immunity and Angiogenesis. American Society for Investigative Pathology Meeting. San Diego, CA, US. Apr 26-30, 2014.The FASEB J 28, 397.7, 2014.

40. Loewenberg, M., Pascal, J., Chauviere, A., Cristini, V. Modeling Motor-Assisted Intracellular Cargo Transport, AIChE Annual Meeting. San Francisco, CA, US. November 6, 2013.

41. Kerketta, R., Wang, Z., Cristini, V. Mathematical Modeling of Diffusion Barriers in Colorectal Cancer Metastases to the Liver. Nanoparticle Synthesis and Applications to Cancer Imaging and Treatment Symposium (CNTC), Science & Math Learning Center, Main Campus, UNM. Albuquerque, NM, US. August 16, 2013.

References

  1. Dr Cristini’s name is often misspelled in citations so the official figures are underestimate
  2. Consulting history available upon request