Vittorio Cristini

From Top Italian Scientists Wiki
Revision as of 14:24, 17 March 2024 by Admin (talk | contribs)

Vittorio Cristini, Ph.D.

PRESENT TITLES

  • Professor of Computational Biology and Mathematics in Medicine, 2022-present
Department of Medicine, The Houston Methodist Research Institute
  • Professor and Chairman, Mathematics in Medicine Program, 2018-present
The Houston Methodist Research Institute
  • Professor, Population Health Sciences, 2021-present
Weill Cornell Medicine, Cornell University
  • Professor, Physiology, Biophysics and Systems Biology, 2021-present
Weill Cornell Medicine, Cornell University, 2017-present
  • Adjunct Professor, Department of Imaging Physics
The University of Texas MD Anderson Cancer Center

Business Address: Houston Methodist Research Institute, R8-123, 6670 Bertner Avenue, Houston Texas- 77030, Email: vcristini@houstonmethodist.org, Phone- 505-934-1813

SHORT BIOGRAPHY AND PERSONAL STATEMENT

Since July 2018, I have been with the Houston Methodist Research Institute (HMRI) as Professor and Chairman of the Mathematics in Medicine Program, while my academic appointments are as Professor of Physiology, Biophysics and Systems Biology at Cornell University Medical School and Professor of Computational Biology and Mathematics in Medicine at the Department of Medicine of Houston Methodist. I am also member of the graduate program and of the promotion and tenure committee at both institutions. Finally, I am currently an Adjunct Professor of Imaging Physics at the MD Anderson Cancer Center. In the past decades, by focusing on clinical translation of mathematical and biophysical models, I have established multiple local, national, and international collaborations, in order to combine forces and work towards multi-faceted and multi-disciplinary studies. More recently, my team has established several collaborations with research scientists and clinicians at the HMRI in different fields of interest, including immunoncology (Dr. Shu-hsia Chen), and clinical translational cancer research (Drs. Jenny Chang, Esnaola Kai and Bernicker, Houston Methodist Cancer Center). These collaborative efforts have resulted in the development of several successful grant applications. Over the years, I’ve also served as consultant or independent contractor for a number of pharma and biomedical device companies and as CFO for a neuroimaging society.[2]

Scientific recognition

The collaborations and scientific output throughout the years have brought me international recognition as a “thought leader” of research excellence and leadership in the fields of mathematical and computational biology, applied and computational mathematics, physical oncology, complex fluids and microfluidics, and multidisciplinary (bio)materials science. In 2014, I was honored to be recognized ISI Highly-Cited Researcher in Mathematics, and had the privilege to be named one of the World’s “most influential scientific minds,” shared with less than 100 mathematicians worldwide. In my 27 years in research, I have also had the privilege to serve as editor for several scientific journals, including Cancer Research, NeuroImage, Frontiers, and PLOS Computational Biology, I have published over 100 peer-reviewed journal articles, and two book monographs with Cambridge University Press in 2010 and with CRC Press in 2017. I have served as consultant and board member for a number of private companies3, and on several faculty committees at various academic institutions.

My work has been recognized through various awards, nationally and internationally. I was the first recipient of the “Andreas Acrivos Dissertation Award in Fluid Dynamics” by the American Physical Society in 2000 for my PhD thesis in Chemical Engineering at Yale University. My 2005 paper in the Bulletin of Mathematical Biology was in the top 0.1% of citations in the field of Mathematics and has been designated as a “New Hot Paper in the field of Mathematics” by the Institute for Scientific Information (ISI) Web of Knowledge; two articles have been featured in the Cancer Research Highlights of the American Association for Cancer Research. My research has been highly recognized internationally and by the media and several science museums in the US, and has been supported by the Cullen Trust for Health Care, Artidis corporation, the National Science Foundation, the National Institutes of Health, the Department of Defense, and the States of California, Texas, and New Mexico, among others.

Funding and strategic development

Over the past 20 years, I have continually served in PI roles on several NSF, NIH, and DoD grants focused on the development of predictive multi-scale, patient-specific computational models of tumor growth and mechanistic mathematical models of tumor response to chemo/immunotherapy, targeted therapy, and nano-therapeutics, most notably as part of multi-institutional grants including two NSF and joint NSF/NIGMS grants (funded in September 2017 and 2013, respectively), two R01s beginning in April and July 2018, two U01 NCI grants on pancreatic and gynecological cancers (funded in August 2015 and July 2017, respectively), two NCI Physical Sciences in Oncology Centers (PS-OC), one NCI Center for Excellence in Cancer Nanotechnology (CCNE), of which I also served as the overall PI in 2015-2016, one NCI Integrative Cancer Biology Program (ICBP) center grant, and one NIGMS P50 grant in systems biology, several additional R01s and one SPORE grant. At UCI, UNM, UTHealth, and HMRI I have developed and taught novel courses in Computational and Precision Biomedicine, and have mentored and trained graduate students, postdocs, and junior faculty, including mentees in the NIGMS Spatio-Temporal Modeling Center (STMC UNM) and the NIGMS-IRACDA Academic Science Education and Research Training (ASERT) program, Weil-Cornell Graduate School, and Rice University Applied Physics. I have also established important collaborations with industrial partners as well, including ARTIDIS (a company based in Basel, Switzerland), and AstraZeneca. One of the major goals behind this type of strategic network of preclinical and clinical collaborations with mathematical, physical scientists, and engineers is to develop new intellectual property (IP) centered around mathematical interpretation of clinically relevant data methods to predict and optimize therapy outcome.

Modeling-supported clinical translation

I pioneered the field of “Physical Oncology”, which aims at using mathematical modeling, physical theories, and engineering approaches to describe and quantify biological mechanisms that play important roles in the growth of cancer and in response to therapies. With a solid background and experience in Applied Mathematics and Chemical Engineering, and specifically in the development of theories and numerical methods in Complex Fluids and Materials, I am dedicated to applying and adapting engineering and physical sciences approaches to the modeling of complex normal and pathologic biological tissue. One important approach I have been leading is focused on investigating the effects of diffusion, perfusion, and transport phenomena on cancer growth and dissemination rate, and on the development of resistance to drug or other systemic therapies. All the models and approaches developed within this framework integrate input from patient and experimental data (ACS Nano 2013, PLOS Computational Biology 2013, 2016, PLOS One 2013, 2016, Scientific Reports 2018, Nature Communications 2018, JCI Insight 2019). These efforts have been supported by the National Cancer Institute’s (NCI) Physical Science in Oncology (PS-OC) and the Center for Excellence in Cancer Nanotechnology funding mechanisms (three U54s funded) and regular R01-type funding from the National Science Foundation and National Institutes of Health. In line with this type of work, I have also made important discoveries on the role of physical transport in drug resistance in patients (JCI 2014, PNAS 2013, 2016, Clin Cancer Res 2018, Science Advances 2020, Nature BME 2021, ELife 2022). Currently, a first-of-kind effort is underway at the MD Anderson Cancer Center, the Baylor College of Medicine, and the Houston Methodist Cancer Center, towards the development of prospective clinical trials (and retrospective clinical studies) based on my mathematical models of physical transport in tumors to elucidate the role of physics in overall resistance to cancer chemotherapy and immunotherapy drugs.

My translational modeling effort is part of an ongoing collaboration with biologists, oncologists, and nanotechnologists at MD Anderson Cancer Center (Drs. Anirban Maitra, Gabriel Lopez-Berestein, Anil Sood, David Hong, Jen Wargo, George Calin, Bulent Ozpolat, Eugene Koay, Subrata Sen, James Welsh, Mary Edgerton, John Hazle, Ahmed Kaseb, and Christopher Crane among the others), Moffitt Cancer Center (Drs. Jason Fleming, Daniel Anaya), Baylor College of Medicine (Drs. Alastair Thompson, Michael Lewis, and Jeff Rosen), UNM (Drs. Jeffrey Brinker, Elaine Bearer, Cheryl Willman), Rutgers University (Drs. Wadih Arap, Renata Pasqualini, Daniela Staquicini), Stanford University School of Medicine (Dr. Sam Gambhir), USC School of Medicine (Dr. David Agus), and Houston Methodist (Drs. Haifa Shen, Shu-hsia Chen, Alessandro Grattoni, and others). To properly account for the purely biological phenomena affecting this tissue physics, we developed data-driven cell signaling and molecular interaction models, including under the umbrella of the NCI ICBP program (one additional U54 funded) in collaboration with the Baylor College of Medicine and also in collaboration with UNM (Cancer Res 2009a,b, Physical Biology 2012, PLOS Comput Biol 2016).

Education and outreach

As a scientific leader, I also contributed to developing outreach and education initiatives to promote novel approaches and results coming from the field of physical oncology. In particular, with the support of the NCI, we have developed a series of educational workshops (most notably: The Ohio State University workshop on “The role of biomedical informatics in overcoming current barriers in cancer research” 2008; and the National Cancer Institute meeting: “Integrating and Leveraging the Physical Sciences to Open a New Frontier in Oncology” 2008). These efforts led to the creation of the PS-OC program by the NCI. An introduction to this new field was developed in my book monograph on multiscale mathematical modeling of tumor growth, Cambridge University Press (2010). A second monograph, titled “An Introduction to Physical Oncology”, was published by CRC Press in 2017, where new mathematical models of physical transport processes (including our recent modeling work) that use patient tissue and imaging data to predict the efficacy of 6mmune/chemotherapy and radiation therapy are introduced and discussed.

In my career, I have also had the pleasure to serve as mentor to ca. 100 trainees, including graduate students, postdocs and junior faculty, and many of them have gone on to successful research and academic careers (e.g., Dr. Paul Macklin, Indiana University; Dr. Steven Wise, The University of Tennessee; Dr. Hermann Frieboes, University of Louisville; Dr. Jennifer Pascal, University of Connecticut, Drs. Wang, Dogra, Nizzero and Butner, HMRI). My current research group is highly interdisciplinary, and includes undergraduate students, graduate students, post-doctoral fellows, research associates, and junior faculty in the field of biophysics, applied physics, engineering, statistics, mathematical modeling, imaging, and immunology.

Citizenship

United States of America, Italy

Undergraduate Education

1989 – 1994 University of Rome – La Sapienza, Laurea Degree, Summa cum Laude, Nuclear Engineering

Graduate Education

1995 – 1996 Yale University, New Haven, Connecticut, M.S., Chemical Engineering

1996 – 1998 Yale University, New Haven, Connecticut, M.Phil., Chemical Engineering

1998 – 2000 Yale University, New Haven, Connecticut, Ph.D., Chemical Engineering, Thesis: “Drop dynamics in viscous flow”

Postgraduate Training

2000 – 2002 University of Minnesota, Minneapolis, Minnesota, Postdoctoral Associate, Chemical Engineering and Materials Science

2001 – 2002 University of Minnesota, Minneapolis, Minnesota, Postdoctoral Associate, Institute for Mathematics and its Applications

Academic and Administrative Appointments

2022-present Houston Methodist Department of Medicine, Professor of Computational Biology and Mathematics in Medicine

2021-present Weill Cornell Medicine, Cornell University, Professor of Population Health Sciences

2020-present Weill Cornell Medicine, Cornell University, Professor, Graduate School of Medical Sciences

2018-present The Houston Methodist Research Institute (HMRI), Professor & Director, Mathematics in Medicine Program

2017-2018 The University of Texas Health Science Center at Houston McGovern Medical School, Co-director of the Nanochemistry and 3D-printing Service Center Institute for Molecular Medicine; Co-director of the Proteomics Service Center, Institute for Molecular Medicine

2017-present The University of Texas MD Anderson Cancer Center, Adjunct Professor, Department of Imaging Physics

2016–2018 The University of Texas Health Science Center at Houston McGovern Medical School, Professor with tenure and Director, Center for Precision Biomedicine, The Brown Institute of Molecular Medicine

2015–2016 The University of Texas Health Science Center at Houston McGovern Medical School, Visiting Professor and Chairman, Department of Nanomedicine and Biomedical Engineering; Professor, Center for Proteomics and Systems Biology, The Brown Institute of Molecular Medicine

2015-2018 Department of Nanomedicine, Full Affiliate Member, HMRI

2014 – 2015 King Abdulaziz University, Jeddah, Saudi Arabia, Distinguished Adjunct Professor, Department of Mathematics

2012 – 2018 The Methodist Hospital Research Institute, Senior Scientist Fellow

2010 – 2015 University of New Mexico, Albuquerque, New Mexico, Professor, Department of Chemical and Nuclear Engineering; Professor, Center for Biomedical Engineering, The Victor and Ruby Hansen Surface Professor in the Molecular Modeling of Cancer, UNM Cancer Center; Director of Computational Biology, Department of Pathology; Professor with Tenure, Department of Pathology

2009 – 2010 University of Texas Health Science Center at Houston, Texas, Professor, Department of Biomedical Engineering; Director, Center for Computational Biomedicine, School of Biomedical Informatics; Professor with Tenure, School of Biomedical Informatics

2009 – 2010 University of Texas MD Anderson Cancer Center, Houston, Texas, Associate Professor, Department of Systems Biology, Division of Cancer Medicine

2009 – 2010 University of Texas at Austin, Texas, Professor, Department of Biomedical Engineering

2009 – present University of Dundee, Scotland, UK, Honorary Professor, Department of Mathematics

2009 – 2010 Scottish Universities Life Sciences Alliance, Scotland, UK, Professor

2009 Auvergne University, Clermont-Ferrand, France, Chair of Excellence in Neurosurgery

2007 – 2009 University of Texas MD Anderson Cancer Center, Houston, Texas, Associate Professor, Department of Systems Biology, Division of Cancer Medicine

2007 – 2009 University of Texas at Austin, Texas, Associate Professor, Department of Biomedical Engineering

2006 – 2009 University of Texas Health Science Center at Houston, Texas, Associate Professor, Department of Biomedical Engineering, Associate Professor, School of Biomedical Informatics

2006 – 2007 University of California, Irvine, California, Associate Professor, Department of Mathematics

2005 University of Naples, Italy, Visiting Assistant Professor, Department of Chemical Engineering

2002 – 2006 University of California, Irvine, California, Assistant Professor, Department of Biomedical Engineering; Assistant Professor, Department of Mathematics

2002 University of Minnesota, Minneapolis, Minnesota, Mentor Faculty, NIH-National Institute of Dental Craniofacial Res., T32 Training Grant; Visiting Assistant Professor, School of Mathematics

Positions at National/International Professional Organizations

2018 – present Consulting History Information available upon request

2016 – 2017 Society for Brain Mapping & Therapeutics (SBMT), Science Committee Member

2006 – 2007 International Brain Mapping and Intra-operative Surgical Planning Foundation, Chief Financial Officer

2005 – 2007 Centre for Molecular (Bio) Medicine, Trieste, Italy, Scientific Advisory Board Member

2004 – 2006 Orqis Medical/Edwards Lifesciences, Consultant

2004 – 2007 International Brain Mapping and Intra-operative Surgical Planning Society, Board of Directors

2004 – 2007 American Institute of Chemical Engineers, Fluids Programming Committee Member

HONORS AND AWARDS

  • EnMed Capstone Innovator Award, Texas A&M U & Houston Methodist, 2023/9. (Award recipient: Gayatri Prakash, Mentor: Zhihui Wang)
  • Wolfram Innovators Award (an International award by Wolfram Technology); for using Mathematica for mathematical modeling to predict cancer patient response to immune checkpoint inhibitor immunotherapy on a per-patient basis, using only current standard-of-care clinical measures, and at times earlier after start of treatment than current response assessment standards are able to provide, 2021/10. (with Joseph D. Butner and Zhihui Wang)
  • Career Cornerstone Award, 2021/4, Houston Methodist. (with Zhihui Wang)
  • President’s Award for Excellence in Peer-Reviewed Publication for “A mathematical model for the quantification of a patient’s sensitivity to checkpoint inhibitors and long-term tumour burden,” in Nature Biomedical Engineering, 2021/1, Houston Methodist (with Joseph D. Butner and Zhihui Wang)
  • The Cockrell Foundation Professorship Award to support mathematical modeling efforts in infectious diseases research at HMRI. 2021-2024. (with Prashant Dogra)
  • News press featuring paper Dogra et al., ACS Pharmacology & Translational Science 2021, DOI: 10.1021/acsptsci.0c00183: New York Times Medical Sciences, News Medical
  • News press featuring paper Butner et al., Sci Adv 2020, PMC7190324: AAAS EurekAlert!, Medical Xpress, Science Magazine, 7th floor, News Medical, New Break, Bright Surf, Advanced Science News, MJH Life Science, X-MOL, News Break
  • Featured article: “A Multiscale Agent-Based Model of Ductal Carcinoma in Situ,” by Butner et al., IEEE TBME 2020 May.
  • Excellence in Mentoring Award 2019. Methodist Association for Postdoctoral and Trainee Affairs. (Postdoc: Sara Nizzero)
  • Award for Excellence in Peer-Reviewed Publication for “Establishing the Effects of Mesoporous Silica Nanoparticle Properties on in vivo Disposition Using Imaging-Based Pharmacokinetics,” in Nature Communications 2018, Houston Methodist
  • Government of Mexico CONACYT Fellowship, 2018-Present (Student: Maria Jose Pelaez Soni, Rice University)
  • Ph.D. Thesis “with distinction” (Student: J. Butner, Center for Biomedical Engineering, UNM), July 2017. · Invited feature in Global Health & Pharma 2016, www.ghp-magazine.com
  • Invited contributions to Open Access Government, 2015-2021
  • Endowed Chair – Rochelle and Max Levit Chair in the Neurosciences, The University of Texas Health Science Center at Houston McGovern Medical School. 2016-2018
  • UT STAR award – The University of Texas System – Science and Technology Acquisition and Retention (STARS). 2015 “Mathematical modeling integrated with experiments and clinical trials to understand tumor heterogeneity, drug delivery and treatment outcome” ($1,000,000)
  • V Cristini, EJ Koay, Z Wang. Taking cancer out of the equation. International Innovation 2015 (September) 191: 38-40.
  • Named as one of the “World’s Most Influential Scientific Minds” in 2014 by Thomson Reuters. http://highlycited.com
  • Named in 2014 by the Institute for Scientific Information (ISI), Thomson Reuters, as one of 99 Highly-Cited Researchers in Mathematics worldwide. http://highlycited.com
  • Endowed Professorship – The Victor and Ruby Hansen Surface Professor of Molecular Modeling of Cancer, University of New Mexico Cancer Center, 2010-2015.
  • Recent Articles and News Reports, featuring Dr. Cristini’s latest research have appeared in 2013-2015, including in: The Business Journals; ABC News and local TV and radio shows; several daily newspapers; The Morning Brew; AdvanceWeb; Newswise; The Stanford Biomedical Computation Review (see below for detailed media coverage links)
  • The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2013-2014 (Student: Romica Kerketta, UNM)
  • 2013-2014 School of Engineering Award – the Charlotte and William Kraft Graduate Fellowship (Student: Terisse Brocato, UNM)
  • The New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC) Graduate Fellowship, 2014-2016 (Student: Terisse Brocato, UNM)
  • The New Mexico Center for the Spatiotemporal Modeling of Cell Signaling (STMC) Graduate Student Fellowship, 2014-2016. (Student: Prashant Dogra, Biomedical Sciences, University of New Mexico)
  • NIGMS-IRACDA Academic Science Education and Research Training (ASERT) K12GM088021 postdoctoral fellowship (Jennifer Pascal)
  • PS-OC Newsletter 2014, “Physical Transport Properties Could Predict Outcomes for Patients with Cancer”
  • Young Oncologist Essay Award, American Radium Society’s 95th Annual Meeting, April 27 – May 1, 2013, Scottsdale, Arizona (E Koay)
  • Front cover of Physical Biology, October 2012
  • Articles by van de Ven et al, AIP Advances 2012, and by Chauviere et al., AIP Advances 2012, selected for inclusion in the Virtual Journal of Nanoscale Science & Technology, April 2012
  • Chair of Excellence in Neurosurgery, Auvergne University, Clermont-Ferrand, France, 2009
  • Highly Accessed BioMed Central Paper (Sanga, S. et al., BMC Medical Genomics 2009, 2:59)
  • SULSA Professor 2009-2010 (Scottish Universities Life Sciences Alliance)
  • Front cover of Nonlinearity 2010
  • Honorary Professor of Mathematics, University of Dundee, Scotland UK, 2009-present
  • Founding Member of International Academy of Nanomedicine (IANM), 2009-present
  • Active Member (by invitation) of American Association for Cancer Research (AACR), 2009-present
  • Cancer Research Highlights, May 15 2009: “Multi-parameter Computational Modeling of Tumor Invasion.” (Cancer Research 2009 69: 4493-4501)
  • Interview on National Public Radio, May 25 2009, “Math Could Help Solve Cancer Tumor Mysteries,” by Jack Williams.
  • Special Feature of article: “Prediction of drug response in breast cancer using integrative experimental/computational modeling,” by Frieboes et al., Cancer Research 2009, at the American Association for Cancer Research annual meeting, Denver, CO 2009.
  • Special Feature of article: “Multi-parameter Computational Modeling of Tumor Invasion,” by Bearer et al., Cancer Research 2009, at the American Association for Cancer Research annual meeting, Denver, CO 2009.
  • Special feature of Dr. Cristini’s project “Virtual Cancer” at the event “Gratias Dono” – Gifts that change life, organized by the University of Texas Health Science Center to honor medical philanthropy. Houston Country Club, February 4 2009.
  • 2008 STEP-UP Clinical and Research Internship Award for Research Excellence—MD Anderson Cancer Center (Undergraduate student: Deepa Raghunathan)
  • Featured in Forbes magazine – “Can Mathematics Cure Cancer?” 27 October, 2008
  • Video exhibit of Cristini’s cancer simulations in the Boston Museum of Science, 2008
  • Front cover of Journal of Mathematical Biology 2008
  • Featured in the Cancer Bulletin of the National Cancer Institute (“The mathematics of cancer”, Cancer Bulletin July 10, 2007 – Vol. 4 / Number 21)
  • Fellow, American Academy of Nanomedicine, 2006-present
  • Front cover of Bulletin of Mathematical Biology 2006-2009
  • Cancer Research Highlights, Feb 1 2006: “Simulation model predicts tumor invasion in marginal environmental conditions.” (Cancer Res 2006; 66(3):1597-604)
  • UNCF-MERCK Graduate Science Research Dissertation Fellowship, 2006-2008 (Student: N DeMagalhaes).
  • NIH Graduate Fellowship, 2006-2008 (Student: N DeMagalhaes)
  • Biomedical Engineer of the year, The Henry Samueli School of Engineering, University of California at Irvine, 2006 (Student: K. Velasco)
  • New Hot Paper in the field of Mathematics, Jul 2006, Thomson-Scientific Essential Science Indicators (Bull Math Biol. 2005; 67(2):211-59)
  • B. S. Honors Thesis, U. of Minnesota 2004 (Student: A. Anderson)
  • · Physical Sciences Faculty Endowed Award, U.C. Irvine, 2003-4 (Student: X. Zheng,)
  • Research Scholarship, Minnesota Supercomputing Institute, Univ of Minnesota, 2001
  • Andreas Acrivos Dissertation Award in Fluid Dynamics, American Physical Society—Division of Fluid Dynamics 2000, “For important theoretical and numerical contributions to the description and understanding of drop dynamics and breakup in laminar and turbulent flows”
  • Henry Prentiss Becton Dissertation Award, Yale 2000, “For exceptional achievements in the field of Engineering and Appl. Sci.”
  • Outstanding Paper Award, American Institute of Chemical Eng 1997
  • Harold Cheel Fund Graduate Fellowship, Yale U. 1995
  • Ente Nazionale Energia Atomica (ENEA) Fellowship, Italy, 1994-1995
  • University of Rome – La Sapienza. Laurea Degree, Summa cum Laude, Nuclear Engineering, 1994

Media coverage (selected)

Dogra, P. et al. JCI Insight 2023 PMC10371350 DOI: 10.1172/jci.insight.169860

Newswise: https://www.newswise.com/coronavirus/study-suggests-longer-time-between-covid-19-vaccines-more-effective-for-some/?article_id=790807
Becker’s Hospital Review: https://www.beckershospitalreview.com/public-health/new-covid-19-bivalent-booster-may-require-customized-dosing-study.html
Houston Methodist Newsroom: https://www.houstonmethodist.org/newsroom/study-suggests-longer-time-between-covid-19-vaccines-more-effective-for-some/
Medical Xpress: https://medicalxpress.com/news/2023-04-longer-covid-vaccines-effective.html

Butner et al., eLife, 2021 PMID: 34749885 DOI: 10.7554/eLife.70130.

eLife Press Release, Model predicts early response to cancer immunotherapy https://elifesciences.org/for-the-press/4e89e409/model-predicts-early-response-to-cancer-immunotherapy
X-MOL https://en.x-mol.com/paper/article/1392261663514148864
Society https://sciety.org/articles/meta/10.1101/2021.05.10.21256419
Technology Networks Mathematical Model Designed to Predict Early Response to Immunotherapy https://www.technologynetworks.com/cancer-research/news/mathematical-model-designed-to-predict-early-response-to-immunotherapy-355667

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2021-02/hm-mmd020121.php

ScienceNet.cn by China Science Daily

http://news.sciencenet.cn/htmlpaper/2021/1/202111116585021860733.shtm?id=60733
https://mp.weixin.qq.com/s/vO0S5yqUJEAPW0HusY0z-g

X-MOL

https://www.x-mol.com/paper/1346548820336594944

NewsBreak

https://www.newsbreak.com/news/2138602865734-a-mathematical-model-for-the-quantification-of-a-patients-sensitivity-to-checkpoint-inhibitors-and-long-term-tumour-burden

Nonur.com

https://nonur.com/2021/02/02/mathematical-method-developed-to-predict-cancer-and-drug-specific-immunotherapy-efficacy/

Nature in Facebook

https://m.facebook.com/nature/posts/10158296561028167

Nature Bioengineering Community

Towards providing physicians with a quantitative tool for optimizing immunotherapy treatment protocols for each individual patient https://bioengineeringcommunity.nature.com/posts/towards-providing-physicians-with-a-quantitative-tool-for-optimizing-immunotherapy-treatment-protocols-for-each-individual-patient

Diagnostics World

Mathematical Model of Treatment Response ‘Designed For Clinical Translation’ https://www.diagnosticsworldnews.com/news/2021/03/04/mathematical-model-of-treatment-response-designed-for-clinical-translation

The Naked Scientist (BBC)

https://www.bbc.co.uk/sounds/play/p0915r4r

Science Daily

https://www.sciencedaily.com/releases/2020/12/201210112118.htm

AP News

https://apnews.com/press-release/pr-newswire/business-pandemics-public-health-products-and-services-coronavirus-pandemic-d69af76f4657a6cce42b7600a67fdb39

News Medical

https://www.news-medical.net/news/20201210/Researchers-find-new-method-for-safe-and-effective-delivery-of-medicines-to-the-lungs.aspx

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2020-12/cp-ivi120320.php https://www.youtube.com/watch?v=wLi0LciskaY&t=13s https://twitter.com/Gut_BMJ/status/1338527208718131206

Social Media

https://www.youtube.com/watch?v=wLi0LciskaY&t=13s
https://twitter.com/Gut_BMJ/status/1338527208718131206
https://www.facebook.com/permalink.php?id=123423901047095&story_fbid=3718876078168508

News Medical

https://www.news-medical.net/news/20201108/Innate-immunity-key-to-limiting-viral-load-in-COVID-19-cases.aspx

AAAS EurekAlert!

https://www.eurekalert.org/pub_releases/2020-04/hm-cmm042920.php

Medical Press

https://medicalxpress.com/news/2020-04-clinically-applicable-math-patient-outcomes.html

Science Magazine

https://scienmag.com/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy/

7th floor

http://7thspace.com/headlines/1180408/clinically_applicable_math_model_predicts_patient_outcomes_to_cancer_immunotherapy.html

News Medical

https://www.news-medical.net/news/20200430/New-math-model-predicts-clinical-outcomes-in-cancer-patients-treated-with-immunotherapy.aspx

NewsBreak

https://www.newsbreak.com/texas/houston/news/0Ov2e42o/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy

Bright Surf

https://www.brightsurf.com/news/article/043020508630/clinically-applicable-math-model-predicts-patient-outcomes-to-cancer-immunotherapy.html

Advanced Science News

https://www.advancedsciencenews.com/a-mathematical-model-to-predict-patient-response-in-cancer-immunotherapy/

The Business Journals

http://www.bizjournals.com/albuquerque/print-edition/2013/08/23/vittorio-cristini-everything-clicked.html

ABC News

http://www.koat.com/news/new-mexico/albuquerque/Cancer-Math/-/9153728/21512452/-/14irq94z/-/index.html

AdvanceWeb

http://laboratory-manager.advanceweb.com/Archives/Article-Archives/Perspectives-in-Pathology-19.aspx

Newswise

http://www.newswise.com/articles/unm-cancer-center-scientist-develops-a-numbers-approach-to-treatment

The Stanford Biomedical Computation Review

http://biomedicalcomputationreview.org/content/cancer%E2%80%99s-crystal-ball-personalized-tumor-models-guide-treatment

Santa Fe New Mexican

http://www.santafenewmexican.com/news/health_and_science/article_905465f9-5772-5c7d-a99e-d73fa07aca41.html

UNM Cancer Center Press Release

http://cancer.unm.edu/files/2013/08/FINAL_20130812_Predictive-Modeling-DrCristini_PR.pdf

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-uses-physics-again-to-fight-cancer/

KSFR SF (radio interview)

http://cancer.unm.edu/newsroom/dr-cristini-fights-cancer-using-an-unconventional-approach/

Albuquerque The Magazine

http://cancer.unm.edu/files/2014/07/Albuquerque-The-Magazine-Dr.-Cristini_2.pdf

The Morning Brew

https://www.youtube.com/watch?v=p9fxhWKnD0g

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-develops-a-numbers-approach-to-treatment/

UNM HSCTV

https://www.youtube.com/watch?v=k-TalZh8y0s

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/dr-cristini-named-influential-scientific-mind/

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/dr-cristini-uses-math-customize-breast-cancer-therapy/

UNM Cancer Center Press Release

http://cancer.unm.edu/newsroom/unm-cancer-center-scientist-recognized-one-influential-scientific-minds/

International Innovation

http://www.internationalinnovation.com/taking-cancer-out-of-the-equation/

American Physiological Society

https://www.newswise.com/articles/fighting-cancer-with-math

Open Access Government

  1. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=4bc1adac-723d-4261-a012-f8ebe5f8ad14
  2. https://www.openaccessgovernment.org/prediction-cancer-treatment-outcome-using-physics-2/21536/
  3. https://www.openaccessgovernment.org/prediction-cancer-treatment-outcome-using-physics/21432/
  4. https://www.openaccessgovernment.org/profile-combining-biology-physics-solve-cancer-problem/22371/
  5. https://www.openaccessgovernment.org/mathematical-relationship-immune-system-cancer-implications-cancer-therapy/22262/
  6. https://www.openaccessgovernment.org/profile-mathematical-pathology-determining-surgical-volume-breast-cancer-treatment/23968/
  7. https://www.openaccessgovernment.org/cancer-diagnosis-and-treatment/25598/
  8. https://www.openaccessgovernment.org/understanding-cancer-physics/25938/
  9. https://www.openaccessgovernment.org/spatio-temporal-mathematical-model-cancer/28963/
  10. https://www.openaccessgovernment.org/integrated-non-invasive-cancer-diagnosis/31174/
  11. https://www.openaccessgovernment.org/tissue-scale-factors-predicting-cancer-treatment-outcome/32302/
  12. https://www.openaccessgovernment.org/stem-cell-transdifferentiation/36169/
  13. https://www.openaccessgovernment.org/dilemma-diagnosis-pancreatic-cysts/35088/
  14. https://www.openaccessgovernment.org/identifying-pancreatic-cysts-might-turn-cancer/34409/
  15. https://www.openaccessgovernment.org/multimodal-feedback-control-can-lead-self-organizing-morphogenesis/34429/
  16. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=558600cb-8de9-4616-9242-f8f3b41da315&pnum=78
  17. https://www.openaccessgovernment.org/regenerative-medicine-to-trump-cancer/53150/
  18. https://www.openaccessgovernment.org/mathematical-modelling-nanoparticle-pharmacokinetics/68801/
  19. https://www.openaccessgovernment.org/wp-content/uploads/2019/10/OAG24-WEB.pdf
  20. https://www.openaccessgovernment.org/oncology/78946/
  21. Nizzero S, Plodinec M, Wang Z, Cristini. Giving oncology its power back: A clinical technology revolution is conquering the US from Texas (December 2019). https://www.openaccessgovernment.org/oncology/78946/
  22. https://www.openaccessgovernment.org/graph-theory-in-the-study-of-alzheimers-disease-progression/83621/
  23. https://www.openaccessgovernment.org/body-dynamics-of-sars-cov-2-treatment-of-covid-19/86929/
  24. Butner et al., “Personalized prediction of immunotherapy efficacy: improving clinical approaches via mechanistic mathematical modeling”, Open Access Government, January 2021: p. 116-117. https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=abe4b9c2-2198-40d4-9b41-c05d7aaff94f
  25. Dogra, P., Cristini, V., “Is the Pandemic Obeying the Elliott Wave Principle of Financial Markets?” (April 2021). https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=4bc1adac-723d-4261-a012-f8ebe5f8ad14
  26. Peláez, M.J., Dogra, P., Cristini, V. “Impact of mathematical modeling in understanding and controlling the COVID-19 pandemic” (October 2021) https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=eaaa2691-f2e2-4ecd-9e5e-f2985210b663

Open Access Government

  1. eBook: http://www.adjacentgovernment.co.uk/wp-content/uploads/2016/01/Uni-of-Texas-ebook-web.pdf
  2. eBook: https://www.openaccessgovernment.org/mathematical-modeling-drug-delivery-via-nanoparticles-cancer-treatment/27830/

Global Health & Pharma

Invited e-book: “Mathematical Pathology” in Global Health & Pharma 2016, www.ghp-magazine.com

Editorial Board (selected)

2023 – present Cancers (Guest Editor)

2022 – present Frontiers in Physiology (Guest Editor)

2021 – present Nanomaterials (Guest Editor)

2013 – present PLOS Computational Biology (Guest Editor)

2011 – present Frontiers in Computational Physiology and Medicine

2010 – present World Journal of Clinical Oncology

2009 – present Open Journal of Neuroscience (Ross Science Publishers)

2008 – present Cancer Research (American Association of Cancer Research)

2007 – present Open Biomedical Engineering Journal (Bentham Science)

2007 – present Journal of Serbian Society for Computational Mechanics

2006 – 2007 NeuroImage (Elsevier)

2004 – present Journal of Biomedical Nanotechnology (American Scientific Publishers)

2004 – present Biomedical Microdevices (Springer)

Selected: Invitations for Service on National Grant Review Panels, Study Sections, Committees (mentee involved)

  • Early Career Fellowship review, The India Alliance, 5/2023 (Z Wang)
  • NIH/NCI Clinical and Translational Cancer Research review meeting on breast cancer (R03/R21), 5/2023 (Z Wang)
  • NIH special emphasis panel BBBT for Biodata and Biomodeling, 2/2023 (Z Wang)
  • DOD Breast Cancer Program (BCRP) Clinical and Experimental Therapeutics 1 (CET-1) review panel, 7/2022 (Z Wang)
  • NIH/NCI Program Project V (P01) Special Emphasis Panel (SEP) for PAR-20-077 (National Cancer Institute Program Project Applications, P01), 6/2022 (Z Wang)
  • NIH Modeling and Analysis of Biological Systems (MABS) study section, 2/8-9, 2022 panel member · The Research Foundation Flanders (FWO), Review College. 2022-present
  • NIH special emphasis panel for Academic-Industrial Partnerships for Translation of Medical Technologies, ZRG1 SBIB,10/25-26 (Z Wang)
  • NIH Modeling and Analysis of Biological Systems (MABS) study section panel on October 21-22, 2021
  • European Science foundation reviewer: Research Foundation Flanders call for Junior and Senior Research Projects, 2021
  • NIH/NCI Program Project V (P01) Special Emphasis Panel (SEP), for PAR-20-077 (National Cancer Institute Program Project Applications, P01), 6/10-11, 2021 (Z Wang)
  • RFS/SRFS, Science, Technology, Engineering and Mathematics Selection Panel (STEM Panel), The Research Grants Council (RGC) of Hong Kong, 4/2021 (Z Wang)
  • NIH Special Emphasis Panel ZCA1 RPRB-H (M2), 3/19/21 (P Dogra)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/22-23, 2021 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/29, 2020 (Z Wang)
  • NIH Small Business Innovation Research (SBIR) review panel, co-chair, 2/12, 2021
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/3, 2020 (Z Wang)
  • European Science foundation: I-SITE ULNE (Université Lille Nord-Europe), Program for Early-stage Researchers in Lille (PEARL). 19-Lille-PEARL-007
  • Appel A Projects 2019:Inserm – Département de l’Evaluation et du Suivi des Programmes (DESP)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 10/10-11, 2019 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/24-25, 2019 (Z Wang)
  • NIH MABS Study Section, Special Emphasis Panel/Scientific Review Group, 2/14-15, 2019.
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/8, 2019 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 10/15-16, 2018 (Z Wang)
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 6/15, 2018 (Z Wang)
  • NIH Special Emphasis Panel, 2018/05 ZRG1 BST-H (2), Bioengineering Sciences and Technologies, 4/4 2018
  • NIH special emphasis panel, ZRG1 SBIB-Q 57, Academic-Industrial Partnerships Research for Cancer Diagnosis and Treatment, 2/22-23, 2018 (Z Wang)
  • The Dutch Cancer Society (KWF Kankerbestrijding), external reviewer 2018
  • The Netherlands Organisation for Scientific Research (I, the Dutch Research Council), external reviewer 2018
  • Cancer TMOI, French National Alliance for Life and Health Sciences (AVIESAN) jointly with the French National Cancer Institute (INCa) – mail reviewer in the field of multidisciplinary approaches in modeling complex biological processes applied to cancer, 2017
  • Sinergia funding instrument, Swiss National Science Foundation (SNSF) external reviewer 2018
  • Science Committee – Multidisciplinary Project Award 2018, Cancer Research UK
  • BSF (United States-Israel Binational Science Foundation), external reviewer 2018
  • Medical Research Council (MRC), UK, 2017. Mail reviewer invitation
  • Office of Sponsored Research (OSR) Competitive Research Grants (CRG), Mail review 2017, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
  • Netherlands Organisation for Scientific Research (I, the Dutch Research Council), Innovational Research Incentives Scheme (Veni), I-Interdivisional Veni round, 2017. Mail reviewer.
  • Breakthrough Award Levels 1 and 2 (BTA) peer review panel member invitation, 2017 Breast Cancer Research Program (BCRP), the Department of Defense Congressionally Directed Medical Research Programs (CDMRP).
  • NIH special emphasis panel for U01 Multiscale Modeling (MSM) program, 2016, 2017 (Z Wang)
  • NCI Provocative Questions PQ8: What cancer models or other approaches can be developed to study clinically stable disease and the subsequent transition to progressive disease? 2017. Ad hoc reviewer.
  • Cancer Research UK mail reviewer, 2015-2016.
  • Army Medical Research and Material Command (MRMC) Online Reviewer, 2016.
  • Pathobiology – 2 (PB-2) peer review panel member, 2016 Breast Cancer Research Program (BCRP), the Department of Defense Congressionally Directed Medical Research Programs (CDMRP).
  • NIH reviewer, 2016.
  • The Wellcome trust/DBT India Alliance Fellowship application reviewer, 2016.
  • NIGMS special panel to review a number of “Support of Competitive Research (SCORE)”. Bethesda, Maryland, on June 30 – July 1, 2015.
  • NIH special emphasis panel for Mathematical Modeling, Cancers and Cell Signaling systems, February 26, 2015.
  • Mail and Panel Reviewer, NIH CSR Oncology 1-Basic Translational Integrated Review Group, 2013-2015.
  • Mail and Panel Reviewer, NIH ZRG1 OTC-X(80) AREA: Oncological Sciences study section, 2013-2015.
  • Mail Reviewer, AIRC Italian Association for Cancer Research, 2013.
  • Center Advisory Committee (CAC): NCI Physical Sciences in Oncology Center (PSOC) U54: “The Center for Transport Onco-Physics”.
  • Senior Investigator Committee: NCI Physical Sciences in Oncology Center (PS-OC) U54: “The Center for Multiscale Complex Systems Transdisciplinary Analysis of Response to Therapy”.
  • Senior Leadership Committee; Pilot Grant Review Committee: Integrative Cancer Biology Program (ICBP) NCI U54: “The Center for Systematic Modeling of Tumor Development”.
  • OSU Mathematical Biosciences (MBI) program review, 2012.
  • Reviewer for German and French government grant funding agencies, 2012.
  • Mail Reviewer for several EU agencies, 2011-2013.
  • UNM Cancer Center P30 Senior Leadership Committee, 2011-2012.
  • Reviewer, Texas Center for Cancer Nanomedicine – Pilot Projects, 2011.
  • Reviewer, Center for Systematic Modeling of Cancer Development (Methodist Hospital Research Institute, Houston, TX and Baylor College of Medicine, Houston, TX) – Pilot Projects, 2011.
  • European Partnership for Alternatives Approaches to Animal Testing – Annual Workshop, Brussels, July 5-7, 2010.
  • Panel Member, 2010 DoD Congressionally Directed Medical Research Program (CDMRP), Breast Cancer Research Program (BCRP); Clinical and Experimental Therapeutics 5 (CET-5).
  • NIH mail reviewer (SBIR), 2010.
  • Panel Member, European Commission Research Directorate General Unit F5: Biotechnology for Health, FP7-Health-2010-single-stage – Alternative Testing Strategies, Brussels, March 15-19, 2010.
  • DoD Breast Cancer Idea Award review panel member, 2009, 2010.
  • DoD Breast Cancer Concept Award review panel member, 2009, 2010.
  • Reviewer, Medical Research Council, United Kingdom, 2010.
  • NIH review panel member, 2009.
  • Reviewer, Israel Science Foundation, 2009.
  • Department of Defense—Congressionally Directed Medical Research Program (CDMRP), Concept awards, 2008 Breast Cancer funding cycle.
  • Joint National Science Foundation-DMS/National Institutes of Health-NIGMS panel member 2008. Mathematical Biology.
  • NIH review panel member 2008. R01: Multi-scale modeling of physiome in health and disease.
  • National Cancer Institute—The Ohio State University: workshop on “The role of biomedical informatics in overcoming current barriers in cancer research”, 2008.
  • National Cancer Institute meeting – “Integrating and Leveraging the Physical Sciences to Open a New Frontier in Oncology”, 2008.
  • Reviewer, U.S. – Israel Bi-National Science Foundation, 2008.
  • Reviewer, American Chemical Society, 2007.
  • Reviewer, WWTF Vienna Science and Technology Fund 07. Program: Mathematics and Cancer Nanotechnology.
  • Reviewer, Dept of Energy-Office of Science 03. Program: Innovative and Novel Computational Impact on Theory and Experiments.
  • Panel member, Telemedicine and Advanced Technology Research Command (TATRC)/American Institute of Biological Sciences (AIBS) panel to conduct independent scientific review to the Alliance for NanoHealth (ANH) program. Houston, TX, 2006.
  • Reviewer, Department of Energy-Office of Science, 2005. Program: Basic Energy Sciences.
  • Reviewer, National Science Foundation-Division of Mathematical Sciences, 2005.

EDUCATION AND OUTREACH

Service on Graduate School Committees

2022 – Present Houston Methodist Academic Institute and University of Naples Federico II (Italy) International Academic Affiliation

2021 – Present Weill Cornell Medicine, Cornell University, Professor, Graduate School of Medical Sciences

2017 – 2018 Regular Member, Graduate School of Biomedical Sciences (GSBS) Medical Physics Program, The University of Texas Health Science Center at Houston

2003 – 2006 University of California, Irvine, California, Member and Co-Founder, Mathematical and Computational Graduate Program

References

  1. Dr Cristini’s name is often misspelled in citations so the official figures are underestimate
  2. Consulting history available upon request